897
Views
24
CrossRef citations to date
0
Altmetric
BIOMECHANICS AND MOTOR CONTROL

Leg stiffness decreases during a run to exhaustion at the speed at O2max

&
Pages 556-562 | Published online: 13 Jan 2014
 

Abstract

Vertical and leg stiffness are related to running speed. In endurance running, the ability to maintain stiffness might be more important than the absolute stiffness magnitude. The purpose of this study was to examine changes in vertical and leg stiffness during an exhaustive. Six sub-elite runners (24.2, s = 4.2 years; 1.81, s = 0.03 m; 73.4, s = 4.4 kg) participated in this study. They performed preliminary tests to determine lactate threshold, lactate turnpoint, O2max, sO2max and a series of isokinetic endurance tests. During the run to exhaustion runners were videoed (50 Hz) to determine contact and flight times, from which leg (Kleg) and vertical (Kvert) stiffness were calculated. During the run Kleg showed a significant decrease [P = 0.030, effect size statistics (ES) = 0.74], however, the decrease in Kvert was non-significant and of a small magnitude (P = 0.051, ES = 0.32). The distance covered during the run was correlated with ΔKleg (r = −0.868) but not ΔKvert (r = 0.684). ΔKleg was very strongly related to Δ ground contact time (r = −0.937) and Δ step length (r = −0.957). The Δ ground contact time had a near perfect relationship with Δ step length (r = 0.995). Isokinetic measures were not significantly correlated with either ΔKleg. The ability to maintain a short ground contact time appears to be a key determinant of maintaining performance during a run to exhaustion. Minimising this is important for maintaining Kleg. Kleg was not significantly related to isokinetic measures.

Acknowledgements

We would like to acknowledge the assistance of Emma Davies and Sarah Bowen in the data collection for this study.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.