1,195
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Biological maturity-associated variance in peak power output and momentum in academy rugby union players

, , &
Pages 972-980 | Published online: 02 Aug 2016
 

Abstract

The study aimed to evaluate the mediating effect of biological maturation on anthropometrical measurements, performance indicators and subsequent selection in a group of academy rugby union players. Fifty-one male players 14–17 years of age were assessed for height, weight and BMI, and percentage of predicted mature status attained at the time of observation was used as an indicator of maturity status. Following this, initial sprint velocity (ISV), Wattbike peak power output (PPO) and initial sprint momentum (ISM) were assessed. A bias towards on-time (n = 44) and early (n = 7) maturers was evident in the total sample and magnified with age cohort. Relative to UK reference values, weight and height were above the 90th and 75th centiles, respectively. Significant (p ≤ .01) correlations were observed between maturity status and BMI (r = .48), weight (r = .63) and height (r = .48). Regression analysis (controlling for age) revealed that maturity status and height explained 68% of ISM variance; however, including BMI in the model attenuated the influence of maturity status below statistical significance (p = .72). Height and BMI explained 51% of PPO variance, while no initial significant predictors were identified for ISV. The sample consisted of players who were on-time and early in maturation with no late maturers represented. This was attributable, in part, to the mediating effect of maturation on body size, which, in turn, predicted performance variables.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.