677
Views
3
CrossRef citations to date
0
Altmetric
BIOMECHANICS AND MOTOR CONTROL

Patellofemoral joint kinetics in females when using different depths and loads during the barbell back squat

, , ORCID Icon & ORCID Icon
Pages 976-984 | Published online: 02 Oct 2020
 

Abstract

Back squats are a common strengthening exercise for knee and hip musculature. However, repetitive loaded movements like backs squats result in high patellofemoral joint loading and therefore may contribute to the development of common overuse injuries. Thus, it is important to understand how changing parameters such as squat depth or load influences patellofemoral loading. This study investigated differences in patellofemoral loading when experienced female lifters squatted to three depths (above parallel, parallel, and below parallel) and with three loads (unloaded, 50%, and 85% of depth-specific one repetition maximums). Patellofemoral joint reaction forces (pfJRF) and stresses (pfJS) were calculated from biomechanical models incorporating knee extensor moments (KEM) and joint angles. Peak KEMs displayed a depth-by-load interaction such that within each depth, as load increased so did peak KEM. However, within each load, the effects of depth were different. Peak pfJRF also increased with load and was higher at below parallel than above or parallel depths. Peak pfJS also displayed a depth-by-load interaction, increasing with load within a given depth, and being greatest at the below parallel depths within a given load. If patellofemoral joint loading is a concern, clinicians or coaches should carefully monitor the depth and load combinations being used.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.