1,517
Views
11
CrossRef citations to date
0
Altmetric
Review

Circulating biomarkers associated with performance and resilience during military operational stress

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 72-86 | Published online: 17 Aug 2021
 

ABSTRACT

Adaptation to military operational stress is a complex physiological response that calls upon the sympathetic nervous system (SNS), hypothalamic pituitary adrenal (HPA) axis and immune system, to create a delicate balance between anabolism and catabolism and meet the demands of an ever-changing environment. As such, resilience, the ability to withstand and overcome the negative impact of stress on military performance, is likely grounded in an appropriate biological adaptation to encountered stressors. Neuroendocrine [i.e. cortisol, epinephrine (EPI), norepinephrine (NE), neuropeptide-Y (NPY), and brain derived neurotropic factor (BDNF)], inflammatory [i.e. interleukin 6 (IL-6), IL-1β, IL-4, IL-10 and tumour necrosis factor (TNF)-α], as well as growth and anabolic [i.e. insulin-like growth factor-I (IGF-I), testosterone, and dehydroepiandrosterone (DHEA)] biomarkers independently and interactively function in stress adaptations that are associated with a soldier’s physical and psychological performance. In this narrative review, we detail biomarkers across neuroendocrine, inflammatory, and growth stimulating domains to better elucidate the biological basis of a resilient soldier. The findings from the reviewed studies indicate that military readiness and resiliency may be enhanced through better homeostatic control, better regulated inflammatory responses, and balanced anabolic/catabolic processes. It is unlikely that one class of biomarkers is better for assessing physiological resilience. Therefore, a biomarker panel that can account for appropriate balance across these domains may be superior in developing monitoring frameworks. Real-time physiological monitoring to assess biomarkers associated with resilience will be possible pending more sophisticated technologies and provide a field-expedient application for early identification and intervention of at-risk soldiers to improve military resiliency.

Acknowledgements

The authors would like to thank Leslie Jabloner for her support and contributions in preparing this manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.