307
Views
37
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Crack formation due to weathering of radial and tangential sections of pine and spruce

&
Pages 12-20 | Received 23 Nov 2005, Published online: 22 Aug 2006
 

Abstract

The development of cracks and changes in appearance have been investigated on radial and tangential sections of pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) after exposure outdoors for 61 months. The degradation of the sections has also been studied at the micro-level. The annual ring orientation was the most important factor affecting crack development on weathering. After 61 months of outdoor exposure, the tangential sections of spruce had 1.7–2.2 times greater mean total crack length per area unit than the corresponding radial sections. In pine, the total crack length per area unit on the tangential sections was 2.2–2.6 times greater than that on the radial sections. Tangential and radial sections show the same colour change as a result of weathering. Tangential sections have more and deeper cracks than radial surfaces. The cracks on the tangential sections occur frequently in both earlywood and latewood. On radial sections, cracks occur primarily at the annual ring borders, but to a certain extent also in the earlywood. Decomposition of the cell wall takes place in both radial and tangential cell walls, and cracks tend to follow the fibril orientation in the S2-layer of the cell wall. The radial cell wall of the earlywood has a large number of pits which are degraded at an early stage.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 182.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.