73
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Comparison of transverse compression creep of Pseudotsuga menziesii and Populus sp. in high-temperature steam environments

&
Pages 84-91 | Received 25 Jul 2013, Accepted 22 Jan 2014, Published online: 21 Feb 2014
 

Abstract

Compression creep experiments of Douglas-fir wood (Pseudotsuga menziesii) were performed at high temperature (150°C, 160°C, and 170°C) and under various conditions of steam pressure. The results established that environment conditions had a significant effect on compressive deformation, with the largest deformation obtained under saturated steam conditions. While the temperature significantly affected the compressive deformation of specimens under transient conditions, the temperature within the range studied had little effect on the compressive deformation in saturated steam. Furthermore, in specimens compressed under superheated and transient steam conditions, primary creep behavior was exhibited; while in specimens compressed under saturated steam conditions, creep deformation appeared to enter directly into secondary creep. Moreover, in saturated steam specimens very little creep was observed due to high initial deformation and little potential for additional cell wall buckling. The compressive creep measurements of Douglas-fir were compared with compressive creep of hybrid poplar (Populus deltoides × Populus trichocarpa). Due to lower initial density, and perhaps smaller microfiber angle and lower lignin content of tension wood, the compressive creep modulus of hybrid poplar was lower than Douglas-fir. Therefore, compressive deformation of Douglas-fir, at nearly all examined steam conditions and temperatures, was smaller than compressive deformation of hybrid poplar.

Acknowledgments

The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number [2006-35504-17444] and USDA Wood Utilization Research Center Special Grant number [2008-34158-19302].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 182.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.