255
Views
5
CrossRef citations to date
0
Altmetric
Regular Articles

Investigating the surface wettability and surface free energy of sodium silicate-impregnated poplar wood

, , , , &
Pages 141-150 | Received 03 Jul 2021, Accepted 18 Oct 2021, Published online: 15 Nov 2021
 

Abstract

The surface free energy of wood is an important property that influences later manufacturing process, such as wood gluing and finishing. Sodium silicate modifications of poplar wood inevitably alter wood’s surface free energy. The purpose of this study was to determine the effect of various impregnation times on the resulting surface free energy of radial and tangential sections of poplar wood specimens. The contact angles of standard probe liquids (i.e. distilled water, diiodomethane, formamide) on the surface of the wood were measured by contact angle goniometer, and a geometric average method and acid–base interaction method were applied to calculate and analyze the changes in the surface free energy. In addition, Fourier transform infrared spectroscopy was used to analyze the changes in the functional groups on the wood surface; after finishing the wood surface with water-based or oil-based paint, the paint film adhesion properties were also evaluated. The results indicate that sodium silicate modification can effectively improve the surface wettability and surface free energy of poplar wood. The modification treatment gradually creates hydrophilic groups (e.g. hydrogen bonds, free hydroxyl groups) on the wood surface, and their contents increase with increasing impregnation time. Additionally, by introducing Si-O–C moieties, the polarity, dispersion, and acid–base components of the wood surface all increase to varying degrees. Finally, the sodium silicate modification treatment worsens the adhesion of the paint films on the wood surface, although not to a significant extent.

Acknowledgments

This research was supported by Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology, PR China (2019RS2040) and National Natural Science Foundation of China (31770606).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China: [Grant Number 31770606]; Yunnan Provincial Science and Technology Department: [Grant Number 2019RS2040].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 182.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.