439
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Buckling and bending response of slender piles in liquefiable soils during earthquakes

, &
Pages 129-143 | Received 07 Jun 2007, Published online: 19 May 2008
 

Abstract

Design of pile foundations in seismically liquefiable soils involves identifying the appropriate failure mechanisms. Piles in liquefiable soils are conventionally designed against bending failure due to lateral loads arising from inertia and/or lateral spreading. This is strong evidence that there is another mechanism, which the code does not consider, that may govern the failure of these foundations. In this paper, the response of a single end bearing pile in liquefied soil with and without the effect of axial load has been presented. The effect of liquefaction is incorporated in the pile–soil interaction through nonlinear analysis using the finite difference program Fast Lagrangian Analysis of Continua (FLAC). The method of analysis is carried out using the well documented failure of Showa Bridge piles which failed during the 1964 Niigata earthquake. The response of the pile is also evaluated using dynamic analysis. The need for proper identification of failure mechanisms as well as design guidelines is highlighted.

Acknowledgement

The authors are grateful to Prof. Nozomu Yoshida for his valuable comments and technical support in doing the analysis. The authors are also thankful to the anonymous reviewers for useful comments and constructive criticism which have been very useful in revising the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.