111
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Semi-analytical model for the determination of vertical settlement of crest of road embankments founded on sloping ground

Pages 179-186 | Received 23 Jan 2009, Accepted 05 Nov 2009, Published online: 31 Aug 2010
 

Abstract

Instabilities that follow the pattern of local translational sliding are rather common along old highway embankments founded on natural slopes, mainly in mountainous terrains. In this paper a semi-analytical model for the determination of the vertical settlement of crest of non-cohesive road embankments founded on sloping ground is presented. The model is based on the principal of conservation of energy, where the change of the potential energy of the sliding mass between its initial and final position is taken as equal to the energy dissipated in deformation, that is, in grain to grain friction inside the body of the embankment and along its base. According to the proposed methodology, the vertical settlement Δy of crest results proportionally to the deformation velocity of embankment mass. The mean value of the maximum velocities of embankment grains acquired during sliding is used. The last is obtained from a proposed empirical diagram, the magnitude of which depends on the embankment height, the gradient of natural base and the unit weight and particle size distribution of the embankment material.

Acknowledgements

The author greatly thanks Nick Sidiropoulos for helping with manuscript preparation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.