290
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Mechanical and flow behaviours and their interactions in coalbed geosequestration of CO2

, &
Pages 229-243 | Received 14 Mar 2012, Accepted 10 May 2013, Published online: 16 Jul 2013
 

Abstract

Studying gas transport mechanisms in coal seams is crucial in determining the suitability of coal formations for geosequestration and/or CO2-enhanced coal bed methane recovery (ECBM), estimating CO2 storage capacity and recoverable volume of methane, and predicting the long-term integrity of CO2 storage and possible leakages. Due to the dual porosity nature of coal, CO2 transport is a combination of viscous flow and Fickian diffusion. Moreover, CO2 is adsorbed by the coal which leads to coal swelling which can change the porous structure of coal and consequently affects the gas flow properties of coal, i.e. its permeability. In addition, during CO2 permeation, the coal seam undergoes a change in effective stress due to the pore pressure alteration and this can also change the permeability of the coal seam. In addition, depending on the in situ conditions of the coal seam and the plan of the injection scheme, carbon dioxide can be in a supercritical condition which increases the complexity of the problem. We provide an overview of the recent studies on porous structure of coal, CO2 adsorption onto coal, mechanisms of CO2 transport in coalbeds and their measurement, and hydro-mechanical response of coal to CO2 injection and identify opportunities for future research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.