343
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A study of the behaviour of brittle rocks subjected to confined stress based on the Mohr–Coulomb failure criterion

&
Pages 57-67 | Received 11 Mar 2013, Accepted 01 May 2014, Published online: 15 Jul 2014
 

Abstract

In this study the relationship between brittle rocks’ behaviour and uniaxial compression stress is obtained based on the Mohr-Coulomb failure criterion and the behavioural characteristics of brittle rocks under uniaxial compression stress are investigated. According to the laboratory uniaxial compression tests on granite rocks, and also available results in the literature, required parameters in the study are obtained. It is indicated that the behaviour of brittle rocks which is affected by uniaxial compression is function of cohesion. In the other words, cohesion changes as the uniaxial compression increases. Also, in yield point where its stress is equivalent to the uniaxial compressive strength, the cohesion maximises. By suggesting a new viewpoint to the Mohr’s circle, normal stresses on failure plane, shear stresses tangential to the failure plane and hydrostatic stresses are investigated. Results show that, normal stress on the failure plane in yield point of the behavioural curve equals zero and shear stress tangential to the failure plane is maximum which is equal to the maximum rocks’ natural strength. Also, in this point the strength is equi-pressure, therefore the stress is of hydrostatic type.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.