839
Views
50
CrossRef citations to date
0
Altmetric
Articles

Effect of infill materials on the performance of geocell reinforced soft clay beds

&
Pages 163-173 | Received 07 Jul 2013, Accepted 01 May 2014, Published online: 15 Jul 2014
 

Abstract

The present study deals with model plate load tests conducted on geocell reinforced soft clay beds to evaluate the effect of infill materials on the performance of the geocell. Commercially available Neoweb geocells are used in the study. Three different infill materials namely aggregate, sand and local red soil were used in the study. The load carrying capacity of the geocell reinforced bed (as compared to an unreinforced bed) was found to be increased by 13 times for the aggregate infill, 11 times for the sand infill and 10 times for the red soil infill. Similarly the reduction in the settlement was in the order of 78%, 73% and 70% aggregate, sand and the red soil infill materials respectively. Results suggest that the performance of the geocell was not heavily influenced by the infill materials. Further, numerical simulations were carried out using FLAC2D to validate the experimental findings. The results from numerical studies are in reasonably good agreement with the experimental findings. The outcome of this work is successfully implemented in the construction of the geocell foundation to support a 3 m high embankment in the settled red mud in Lanjighar (Orissa) in India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.