501
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

The effect of specimen diameter size on uniaxial compressive strength, P-wave velocity and the correlation between them

, , &
Pages 13-19 | Received 13 Feb 2013, Accepted 04 Dec 2014, Published online: 01 Jun 2015
 

Abstract

Estimation of uniaxial compressive strength (UCS) by P-wave velocity (VP) is of great interest to geotechnical engineers in various design projects. The specimen diameter size is one of the main factors that influence rock parameters such as UCS and VP. In this study, the diameter size of specimens that effect UCS and VP is investigated. Moreover, the correlation between UCS and VP are examined via empirical analysis. For this purpose, 15 travertine samples were collected and core specimens with a diameters size of 38, 44, 54, 64 and 74 mm were prepared. Then, uniaxial compressive strength and P-wave velocity tests were conducted according to the procedure suggested by ISRM (1981). It is concluded that the diameter size of the specimen has a significant effect on UCS and VP. Moreover, it was found that the best correlation between relevant parameters obtained for the specimen diameter of 38 mm.

Acknowledgment

This work has been supported by the Tarbiat Modares University. The authors would like to thank Mr Ahmad Zalooli for his helpful assistance in the preparation of the samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.