393
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Estimating apparent thermal diffusivity of soil using field temperature time series

&
Pages 28-46 | Received 27 Feb 2014, Accepted 04 Dec 2014, Published online: 06 Mar 2015
 

Abstract

Reliable estimates of soil thermal properties such as heat capacity, thermal conductivity, and diffusivity are important in analysis of heat transmission through soils in applications such as shallow geothermal applications, buried electrical conduits, and in general heat/fluid flow analyses. A number of analytical, numerical and experimental methods are available to determine the soil thermal properties. In this paper, the analytical and numerical methods developed on the basis of one-dimensional heat conduction equation are used to estimate the apparent thermal diffusivity of soil. Three of the four analytical methods, Amplitude, Phase, and Arctangent provide explicit equations for the apparent thermal diffusivity. Two methods, Harmonic and Numerical, make use of large number of temperature measurements to implicitly solve for the apparent thermal diffusivity. The temperature time series data monitored at different depths in two field sites in Melbourne, Australia for more than 2 year period were used to estimate the apparent thermal diffusivity of soil down to 2 m depth. The apparent thermal diffusivity was calculated using all five methods and compared with laboratory experimental results. The effectiveness of each method in predicting the thermal diffusivity was compared and observed discrepancies were discussed. Finally, the observed soil temperature data for a 12 month period are used to model the temperature variation in the ground analytically using Harmonic method and the model prediction for the following 12 month was compared independently with the field measurements. The analytical model prediction is found to be in good agreement with the field monitored data.

Acknowledgements

The authors acknowledge the Australian Research Council, which supported this project via a Linkage Grant of the Australian Research Council. The authors would like to thank the industry partners of the ARC project (LP 100200441) for their financial and (or) in-kind support to this project; namely, City West Water Limited, Jemena, Envestra Limited, Water Corporation, Ipswich Water, South East Water Limited, and Queen’s University (Canada).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.