269
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Soil resistances for laterally loaded rigid piles in multi-layered elastic soil

&
Pages 10-28 | Received 01 Feb 2018, Accepted 25 Mar 2019, Published online: 11 Apr 2019
 

ABSTRACT

Short stubby piles like monopiles and large diameter drilled shafts undergo rigid body translation and rotation when subjected to a lateral force and/or a moment at the head. A method of analysis for these piles embedded in multi-layered elastic soil is developed using the variational principles of mechanics. Using this analysis, the soil resistance against pile movement can be rigorously related to the soil elastic constants, and the pile head displacement and rotation can be quickly calculated. The equilibrium equations for pile and soil displacements are obtained using the principle of virtual work and solved using an iterative algorithm. Pile responses obtained from the analysis match well with those obtained from three-dimensional finite element analyses in which the same inputs of loads, geometry, and material properties are given. Based on the new analysis, fitted equations for soil resistance parameters are developed, which can be used to directly calculate the pile head displacement and rotation without the use of the iterative algorithm. Numerical examples are provided that demonstrate how the method can be used to analyse practical problems.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.