669
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic analysis of reinforced slopes using RFEM and considering spatial variability of frictional soil properties due to compaction

&
Pages 87-108 | Received 07 May 2017, Accepted 23 Jul 2017, Published online: 12 Sep 2017
 

ABSTRACT

Probabilistic stability analyses of constructed wrapped-face reinforced slopes (or embankments) using frictional soils were carried out using the random finite element method (RFEM). Soil properties reported in the literature for unsaturated frictional fills compacted to different densities were used in the simulations. Bar elements were added to the RFEM code to simulate extensible geosynthetic reinforcement layers and the Davis approach was used to improve numerical stability for purely frictional soil slopes at collapse. The influence of isotropic and anisotropic spatially variable soil strength was investigated and shown to have a large influence on the variation of maximum mobilised tensile forces in reinforcement layers for the steep 5 m-high slopes in the study. The influence of fill placed at different layer thickness and compacted to different levels was simulated by adjusting the soil strength and unit weight, and the vertical strength correlation length in the anisotropic spatially variable strength field used in each slope realisation. Numerical results showed that vertical strength correlation lengths approaching the magnitude of fill lift heights can control the probability of failure for reinforced slopes constructed with weak fills placed in lift heights close to but less than the wrapped reinforcement spacing used in the study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors are grateful for financial support through a research grant awarded to the second author by the Natural Sciences and Engineering Research Council of Canada (NSERC). The first author is also grateful for the financial support from the China Scholarship Council (CSC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 172.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.