1,529
Views
5
CrossRef citations to date
0
Altmetric
Articles

Machine learning of geological details from borehole logs for development of high-resolution subsurface geological cross-section and geotechnical analysis

ORCID Icon, &
Pages 2-20 | Received 13 Feb 2021, Accepted 26 Jul 2021, Published online: 30 Sep 2021
 

ABSTRACT

The subsurface geological cross-section is indispensable before design and construction of a geotechnical structure can commence. The development of geological cross-sections often requires significant manual efforts for simplification of stratigraphic boundaries. For example, straight lines are commonly used to connect stratum boundaries at adjacent boreholes, and soil layers with small thicknesses are often ignored. Such a simplification heavily relies on practitioners’ experience and may induce great uncertainties in the developed geological cross-sections and subsequent geotechnical analysis and design (e.g. slope stability analysis). In this study, a Bayesian supervised machine learning method, multiple-point statistics, is adopted to automatically generate high-resolution subsurface geological cross-section with proper incorporation of prior geological knowledge and all details observed from limited borehole logs. Locations and number of boreholes are automatically determined with due consideration of slope failure mechanism. The proposed method is demonstrated using an illustrative example. It is shown that the proposed method successfully captures geological details and local stratigraphic variations within a slope and quantifies the associated interpretation uncertainties. The geological details and local stratigraphic variations have great effects on the slope failure mechanism. There is a risk of overestimating overall slope stability if an over-simplified geological model is adopted for slope design.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work described in this paper was supported by grants from the Research Grant Council of Hong Kong Special Administrative Region, China (Project nos. CityU 11213117 and CityU 11213119). The financial support is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 172.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.