222
Views
20
CrossRef citations to date
0
Altmetric
Articles

Selection of robot for automated foundry operations using fuzzy multi-criteria decision making approaches

, , &
Pages 221-232 | Received 21 Nov 2013, Accepted 27 Dec 2013, Published online: 30 Jan 2014
 

Abstract

This paper employs three Fuzzy Multi-Criteria Decision Making (FMCDM) methodologies in the evaluation and selection of robots for automated foundry operations. In the methodologies, a Fuzzy Analytical Hierarchy Process (FAHP) is integrated individually with a Fuzzy Technique for Order Preference by Similarity to the Ideal Solution (FTOPSIS), a Fuzzy VIsekriterijumska optimizacija i KOmpromisno Resenje (FVIKOR) and a Complex PRoportional ASsessment method with the application of Grey systems theory (COPRAS-G). In each case, a FAHP is used to estimate the fuzzy weights of the selection criteria under consideration. FTOPSIS, FVIKOR and COPRAS-G are applied to evaluate as well as to select the robots. A real life problem of robots selection in foundry operation is cited to demonstrate and validate the applicability and potentiality of the employed methodologies. A comparative analysis of the results obtained by the methodologies is carried out. The study finds that the employed methodologies are useful, effective and sound surrogates for selecting the best robot in an FMCDM environment.

JEL Classification::

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 289.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.