805
Views
8
CrossRef citations to date
0
Altmetric
Articles

Global exponential stability of positive periodic solution of the n-species impulsive Gilpin–Ayala competition model with discrete and distributed time delays

Pages 433-454 | Received 15 Sep 2017, Accepted 13 Apr 2018, Published online: 08 May 2018

ABSTRACT

In this paper, we study the n-species impulsive Gilpin–Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.

2010 MATHEMATICS SUBJECT CLASSIFICATIONS:

1. Introduction

In this paper, we mainly study the n-species impulsive Gilpin–Ayala competition model with discrete and distributed time delays as follows: (1) ui(t)=ui(t)ri(t)j=1naij(t)ujαij(t)j=1nbij(t)ujβij(tτij(t))j=1ncij(t)0Kij(s)ujγij(t+s)ds,ttk,ui(tk+)=ui(tk)+Iikui(tk),k=1,2,,(1) where the explanation of the variables is listed in the following table

By employing the fixed point theorem on cones and constructing appropriate Lyapunov functionals, we have researched the existence and global exponential stability of positive periodic solutions for (Equation1).

It is important and essential to investigate the model (Equation1) attributing to its wide applications. On the one hand, system (Equation1) contain many mathematical population models. Some specific and important models of system (Equation1) are enumerated as follows. For example, when αij=βij=γij=1(i,j=1,2,,n), system (Equation1) changes into the Lotka–Volterra competition population model of the form (2) ui(t)=ui(t)ri(t)j=1naij(t)uj(t)j=1nbij(t)uj(tτij(t))j=1ncij(t)0Kij(s)uj(t+s)ds,ttk,ui(tk+)=ui(tk)+Iiku(tk),k=1,2,.(2) When αij=βij=γij=1(i,j=1,2,,n, ij), system (Equation1) changes into the Gilpin–Ayala competition model (Equation3) of the form (3) ui(t)=ui(t)ri(t)Fi(t,u(t)),ttk,ui(tk+)=ui(tk)+Iiku(tk),k=1,2,,(3) where i=1,2,,n, u(t)=(u1(t),u2(t),,un(t))T, Fi(t,u(t))=aii(t)uiαii(t)+bii(t)uiβii(tτii(t))+cii(t)0Kii(s)uiγii(t+s)ds+j=1,jinaij(t)uj(t)+j=1,jinbij(t)uj(tτij(t))+j=1,jincij(t)0Kij(s)uj(t+s)ds. In [Citation7], Gilpin and Ayala proposed a more realistic and complicated competition model as follows: (4) ui(t)=riui(t)1ui(t)Kiθij=1,jinaij(t)uj(t)Kj,i=1,2,,n,(4) where ui(t) is the ith-species population density of at time t, ri is the ith-species intrinsic exponential growth rate, Ki is the ith-species environment carrying capacity in the absence of competition, θi provides a nonlinear measure of intraspecific interference, and aij(t)(ij) is the interspecific competition rate between the ith-species and the jth-species at time t. Compared with system (Equation4), the model (Equation3) is a more complicated and generalized model containing the model (Equation4).

On the other hand, the model (Equation1) is more advantageous compared with the Lotka–Volterra models. In fact, the rate of change in the size of each species is a nonlinear function of the sizes of the interacting species in the Gilpin–Ayala models. However, the rate of change in the size of each species is a linear function of the sizes of the interacting species the Lotka–Volterra models. It is more precise to describe some ecosystems by the Gilpin–Ayala models than the Lotka–Volterra models. Therefore, as soon as it was put forward, the Gilpin–Ayala models have been widely focused and deeply studied by many scholars. There have been a number of papers dealing with the dynamics of the Gilpin–Ayala models (see [Citation1–6, Citation10–22, Citation24]).

In addition, the changing environment of ecosystem often presents a certain periodicity, for example, seasonal effects of weather, food supplies, mating habits, and so on. So it is more important and necessary to consider the effects of a periodically varying environment than a stable environment. The number of species in ecosystems sometimes changes suddenly because of the effects of natural disasters and human kill and so on. At the same time, the time delay effect is inevitable in ecosystem. To the best of our knowledge, few authors have considered the global exponential stability of positive periodic solutions for model (Equation1). Therefore, it is necessary to study the existence and global exponential stability of positive periodic solutions for (Equation1).

The rest of this paper is organized as follows. In Section 2, we shall give some notations and lemmas. In Section 3, we shall prove the existence of positive periodic solutions. In Section 4, we also obtain the global exponential stability of the positive periodic solution of this system by constructing appropriate Lyapunov functionals and inequality techniques. Finally, an example is given to illustrate the effectiveness of our results in Section 5.

2. Preliminaries

Throughout this paper, we always assume that the assumptions hold as follows:

  1. ri(t), aij(t), bij(t), cij(t)C(R,R+) and τij(t)C(R×Rn,R+) are all ω-periodic with respect to the time variable t. Kij(s)C(R,R+) satisfy 0Kij(s)ds=1. αij>0, βij>0 and γij>0 are the constants. Where i,j=1,2,,n, kN, R=(,0), R+=(0,), R=(,+), ω>0 is a constant.

  2. There exists a positive integer p such that tk+p=tk+ω, Ii,k+p=Iik, kZ, i=1,2,,n. Without loss of generality, we also assume that [0,ω){tk:kZ}={t1,t2,,tp}.

  3. Iik>1, i=1,2,,n, kN are the constants satisfying k=1p(1+Iik)=1.

Consider the following system (5) xi(t)=xi(t)ri(t)j=1naij(t)0<tk<t(1+Iik)αijxjαij(t)j=1nbij(t)0<tk<t(1+Iik)βijxjβij(tτij(t))j=1ncij(t)0<tk<t(1+Iik)γij0Kij(s)xjγij(t+s)ds,i=1,2,,n.(5)

Lemma 2.1

For systems (Equation1) and (Equation5), the following results hold:

  1. If xi(t) (i=1,2,,n) is a solution of (Equation5), then ui(t)=0<tk<t(1+Iik)xi(t) (i=1,2,,n) is a solution of (Equation1).

  2. If ui(t) (i=1,2,,n) is a solution of (Equation1), then xi(t)=0<tk<t(1+Iik)1ui(t) (i=1,2,,n) is a solution of (Equation5).

Proof.

  1. Suppose that xi(t) (i=1,2,,n) is a solution of (Equation5). Let ui(t)=0<tk<t(1+Iik)xi(t) (i=1,2,,n), then for any ttk, kN, by substituting xi(t)=0<tk<t(1+Iik)1ui(t) into system (Equation5), we can easily verify that the first equation of (Equation1) holds. For t=tk,kN, i=1,2,,n, we obtain ui(tk+)=limttk+0<tk<t(1+Iik)xi(t)=0<thtk(1+Iih)xi(tk)=(1+Iik)0<th<tk(1+Iih)xi(tk)=(1+Iik)ui(tk). So, the second equation of (Equation1) also holds. Thus ui(t)=0<tk<t(1+Iik)xi(t) (i=1,2,,n) is a solution of (Equation1).

  2. We first show that xi, i=1,2,,n are continuous. Indeed, xi,i=1,2,,n are continuous on each interval (tk,tk+1]. It is necessary to check the continuity of xi(t) at the impulse points t=tk, kN. Since xi(t)=0<tk<t(1+Iik)1ui(t), i=1,2,,n, we have xi(tk+)=0<thtk(1+Iih)1ui(tk+)=0<thtk(1+Iih)1(1+Iik)ui(tk)=0<th<tk(1+Iih)1ui(tk)=xi(tk),xi(tk)=0<thtk(1+Iih)1ui(tk)=0<thtk(1+Iih)1(1+Iik)ui(tk)=0<th<tk(1+Iih)1ui(tk)=xi(tk). Thus xi(t), i=1,2,,n is continuous on [0,+). It is easy to check that xi(t), i=1,2,,n satisfies Equation (Equation5). Therefore, it is a solution of (Equation5). This completes the proof of Lemma 2.1.

It follows from Lemma 2.1 that if system (Equation5) exists a globally exponentially stable positive periodic solution x¯i(t), i=1,2,,n, then u¯i(t)=0<tk<t(1+Iik)x¯i(t) (i=1,2,,n) is the globally exponentially stable positive periodic solution of system (Equation1). So it is necessary to discuss the existence of globally exponentially stable positive periodic solution for system (Equation5).

For convenience, we introduce some notations θ=min1i,jn{αij,βij,γij},δi=eθ0ωri(τ)dτ,fM=maxt[0,ω]{f(t)},fl=maxt[0,ω]{f(t)}, where i=1,2,,n and f(t) is a continuous ω-periodic function on R.

Making the change of variable yi(t)=xiθ(t), then we can transform system (Equation5) into (6) yi(t)=θyi(t)ri(t)j=1naij(t)0<tk<t(1+Iik)αijyjαij/θ(t)j=1nbij(t)0<tk<t(1+Iik)βijyjβij/θ(tτij(t))0j=1ncij(t)0<tk<t(1+Iik)γij0Kij(s)yjγij/θ(t+s)ds,i=1,2,,n.(6) The existence of globally exponentially stable positive periodic solution for system (Equation6) is equivalent to the existence of globally exponentially stable positive periodic solution of the corresponding integral system. So the following lemmas are important in our discussion.

Lemma 2.2

Let rC(R,R), aR and yaR, the unique solution of the initial value problem v(t)=r(t)v(t)+h(t),v(a)=va is given by v(t)=vaeatr(s)ds+atetsr(τ)dτh(s)ds.

Lemma 2.3

If (H1)(H3) hold, then y(t)=(y1(t),y2(t),,yn(t))T is an ω-periodic solution of (Equation6) is equivalent to y(t) is an ω-periodic solution of the following integral system (7) yi(t)=θtt+ωGi(t,s)yi(s)Hi(s,y(s))ds,i=1,2,,n,(7) where (8) Gi(t,s)=eθtsri(τ)dτ1eθ0ωri(τ)dτ,s[t,t+ω],i=1,2,,n,(8) (9) Hi(s,y(s))=j=1naij(s)0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτ,i=1,2,,n.(9)

Proof.

If y(t)=(y1(t),y2(t),,yn(t))T is an ω-periodic solution of (Equation6), tR, by applying Lemma 2.2 and (Equation6), for s[t,+), we have yi(s)=yi(t)eθtsri(τ)dτθtseθsτri(ξ)dξyi(τ)Hi(τ,y(τ))dτ. Let s=t+ω in the above equality and notice that yi(t)=yi(t+ω), ri(t)=ri(t+ω), we have yi(t)=yi(t+ω)=yi(t)eθtt+ωri(τ)dτθtt+ωeθt+ωτri(ξ)dξyi(τ)Hi(τ,y(τ))dτ=yi(t)eθ0ωri(τ)dτθeθ0ωri(ξ)dξtt+ωeθtτri(ξ)dξyi(τ)Hi(τ,y(τ))dτ, which imply that yi(t)=θtt+ωeθtτri(ξ)dξ1eθ0ωri(τ)dτyi(τ)Hi(τ,y(τ))dτ=θtt+ωGi(t,τ)yi(τ)Hi(τ,y(τ))dτ, where Gi(t,s) and Hi(s,y(s)) are defined by Equations (Equation8) and (Equation9). Thus, we conclude that y(t) satisfies Equation (Equation6), and vice versa. The proof of Lemma 2.3 is complete.

Lemma 2.4

If the condition (H1)(H3) hold, then Gi(t,s) (i=1,2,,n) and Hi(s,y(s))(i=1,2,,n) defined by Equations (Equation8) and (Equation9) satisfies the following:

  1. δi/(1δi)Gi(t,s)1/(1δi), s[t,t+ω], where δi=eθ0ωri(τ)dτ, i=,1,2,,n.

  2. Gi(t+ω,s+ω)=Gi(t,s), s,tR, i=1,2,,n.

  3. Hi(s+ω,y(s+ω))=Hi(s,y(s)), yi(s+ω)=yi(s), i=1,2,,n.

Proof.

According to (H1), we know θri(t)>0 and Gi(t,s)/s<0, that is, Gi(t,s) is monotone decreasing with respect to s. Thus, for s[t,t+ω], we have δi1δi=eθ0ωri(τ)dτ1δi=eθtt+ωri(τ)dτ1δiGi(t,s)eθttri(τ)dτ1δi=11δi. Thus, the assertion (1) holds. Now we show that the assertion (2) also holds. In fact, by the integration by substitution, we have Gi(t+ω,s+ω)=eθt+ωs+ωri(τ)dτ1δi=eθ(t+ωt+ts+ss+ω)ri(τ)dτ1δi=eθtsri(τ)dτ1δi=Gi(t,s). According to Equation (Equation9) and (H1)(H3), we obtain Hi(s+ω,y(s+ω))=j=1naij(s+ω)0<tk<s+ω(1+Iik)αijyjαij/θ(s+ω)+j=1nbij(s+ω)0<tk<s+ω(1+Iik)βijyjβij/θ(s+ωτij(s+ω))+j=1ncij(s+ω)0<tk<s+ω(1+Iik)γij0Kij(τ)yjγij/θ(s+ω+τ)dτ=j=1naij(s)k=1p(1+Iik)αij0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)k=1p(1+Iik)βij0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)k=1p(1+Iik)γij0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτ=j=1naij(s)0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτ=Hi(s,y(s)),i=1,2,,n. Thus Equation (Equation3) also holds. This completes the proof of Lemma 2.4.

Lemma 2.5

When ϑ1 and 0<u1, then 0<uϑu1; When ϑ1 and u1, then 1uuϑ.

Proof.

Let f(u)=uϑ1, when ϑ1 and u>0, then f(u)=(ϑ1)uϑ20, that is, f(u) is monotone increasing on (0,). Thus, when 0<u1, we have 0<uϑ1 and uϑ1=f(u)f(1)=1, namely, 0<uϑu1; when u1, we have uϑ1 and f(u)=uϑ1f(1)=1, namely, 1uuϑ. The proof is complete.

Let X be a real Banach space, and K be a closed non-empty subset of X. Then K is a cone provided

  1. kα+lβK for all α,βK and all k,l0;

  2. α,αK imply α=θ, here θ is the zero element of X.

The following lemma is useful for the proof of existence of positive periodic solution for system (Equation1).

Lemma 2.6

[Citation9]

Let K be a cone in the Banach space X, and Ω1,Ω2 be two bounded open balls of X centred at the origin with 0Ω1 and Ω¯1Ω2. Suppose that Φ:K(Ω¯2Ω1)K is a completely continuous operator such that either

  1. Φuu, uKΩ1 and Φuu, uKΩ2, or

  2. Φuu, uKΩ1 and Φuu, uKΩ2

hold. Then Φ has at least one fixed point in K(Ω¯2Ω1).

3. Existence of positive periodic solutions

In this section, we shall apply Lemma 2.6 to prove the existence of positive ω-periodic solutions for system (Equation1). To do so, define X={y=(y1,y2,,yn)C(R,Rn):yi(t+ω)=yi(t), tR, i=1,2,,n} equipped with the norm defined by y=i=1n|yi|0, where |yi|0=supt[0,ω]{|yi(t)|}, i=1,2,,n. Then X is a Banach space. In view of Lemma 2.4, we define the cone K in X as K=y=(y1,,yn)X:yi(t)δiy, t[0,ω], i=1,2,,n. Let the map Φ be defined by (10) (Φy)(t)=((Φ1y)(t),(Φ2y)(t),,(Φny)(t))T,(10) where yK,tR, (Φiy)(t)=θtt+ωGi(t,s)yi(s)Hi(s,y(s))ds,i=1,2,,n, Gi(t,s)(i=1,2,,n) and Hi(s,y(s)) defined by Equations (Equation8) and (Equation9).

Lemma 3.1

Assume that (H1)(H3) hold, then Φ:KK defined by Equation (Equation10) is well defined, namely, Φ(K)K.

Proof.

For any yK, it is clear that ΦyC(R,Rn). In view of Lemma 2.4 and Equation (Equation10), we obtain (Φiy)(t+ω)=θt+ωt+2ωGi(t+ω,s)yi(s)Hi(s,y(s))ds=θtt+ωGi(t+ω,τ+ω)yi(τ+ω)Hi(τ+ω,y(τ+ω))dτ=θtt+ωGi(t,τ)yi(τ)Hi(τ,y(τ))dτ=(Φiy)(t), that is, (Φiy)(t+ω)=(Φiy)(t), tR, i=1,2,,n. So ΦyX. For any yK, we have |Φiy|0θ1δi0ωyi(s)Hi(s,y(s))ds,i=1,2,,n and (Φiy)(t)θδi1δi0ωyi(s)Hi(s,y(s))dsδi|Φiy|0,i=1,2,,n. So ΦuK. This completes the proof of Lemma 3.1.

Lemma 3.2

Assume that (H1)(H3) hold, then Φ:KK defined by Equation (Equation10) is completely continuous.

Proof.

It is easy to see that Φ is continuous and bounded. Now we show that Φ maps bounded sets into relatively compact sets. Let ΩK be an arbitrary open bounded set in K, then there exists a number R>0 such that y<R for any y=(y1,y2,,yn)TΩ. We prove that Φ(Ω)¯ is compact. In fact, for any yΩ and t[0,ω], by (H1)(H3), we have |(Φiy)(t)|=θtt+ωGi(t,s)yi(s)Hi(s,y(s))dsθ1δi0ωyi(s)Hi(s,y(s))ds=θ1δi0ωyi(s)j=1naij(s)0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτdsθ1δi0ω|yi(s)|j=1naij(s)k=1p(1+Iik)αij|yj(s)|αij/θ+j=1nbij(s)k=1p(1+Iik)βij|yj(sτij(s))|βij/θ+j=1ncij(s)k=1p(1+Iik)γij0Kij(τ)|yj(s+τ)|γij/θdτdsθ1δi0ω|yi|0j=1naijM|yj|0αij/θ+j=1nbijM|yj|0βij/θ+j=1ncijM0Kij(τ)|yj|0γij/θdτdsθωy1δij=1naijMyαij/θ+j=1nbijMyβij/θ+j=1ncijMyγij/θ<θωR1δij=1naijMRαij/θ+j=1nbijMRβij/θ+j=1ncijMRγij/θAi,i=1,2,,n and |(Φiy)(t)|=|θri(t)(Φix)(t)θyi(t)Hi(s,y(t))|=θri(t)(Φiy)(t)yi(s)j=1naij(t)0<tk<t(1+Iik)αijyjαij/θ(t)+j=1nbij(t)0<tk<t(1+Iik)βijyjβij/θ(tτij(t))+j=1ncij(t)0<tk<t(1+Iik)γij0Kij(τ)yjγij/θ(t+τ)dτθriMAi+θyj=1naijMk=1p(1+Iik)αijmmω<tk<t(1+Iik)αijyαij/θ+j=1nbijMk=1p(1+Iik)βijmmω<tk<t(1+Iik)βijyβij/θ+j=1ncijMk=1p(1+Iik)γijmmω<tk<t(1+Iik)γij0Kij(τ)yγij/θdτθriMAi+θyj=1naijMmω<tk<t(1+Iik)αijyαij/θ+j=1nbijMmω<tk<t(1+Iik)βijyβij/θ+j=1ncijMmω<tk<t(1+Iik)γijyγij/θ<θriMAi+θRj=1naijMmω<tk<t(1+Iik)αijRαij/θ+j=1nbijMmω<tk<t(1+Iik)βijRβij/θ+j=1ncijMmω<tk<t(1+Iik)γijRγij/θBi,i=1,2,,n, where m=[t/ω]. Hence, (Φy)max{A1,A2,,An}, (Φy)max{B1,B2,,Bn}. It follows from Lemma 2.4 in [Citation23] that Φ(Ω¯) is relatively compact in X. Therefore, Φ:KK defined by Equation (Equation10) is completely continuous.

Theorem 3.1

Assume that (H1)(H3) hold. Assume further that

  1. (θωδi2/(1δi))j=1n(aijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θ)<1, i=1,2,,n.

Then system (Equation1) has at least one positive ω-periodic solution.

Proof.

Define the operator Φ:KK as Equation (Equation10). According to Lemmas 3.1–3.2, we know that Φ:KK is completely continuous. According to (H4), we take r1=min1in1δiθωj=1n(aijM+bijM+cijM)+1,r2=max1inθωδi21δij=1naijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θ1. Obviously, 0<r1<1<r2. Define Ωi={uK:u<ri}, i=1,2. By Lemma 2.3, it is easy to see that if there exists y¯(t)K such that (Φy¯)(t)=y¯(t), then y¯(t) is one positive ω-periodic solution of system (Equation6). Now, we shall prove that condition (i) of Lemma 2.6 holds. In fact, For all yKΩ1, namely, y=r1<1, from (H1)(H4) and Lemma 2.4–2.5 and noticing that αij/θ1, βij/θ1 and γij/θ1, i,j=1,2,,n, we have |(Φiy)(t)|=θtt+ωGi(t,s)yi(s)Hi(s,y(s))dsθ1δi0ωyi(s)Hi(s,y(s))ds=θ1δi0ωyi(s)j=1naij(s)0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτdsθ1δi0ω|yi(s)|j=1naij(s)k=1p(1+Iik)αij|yj(s)|αij/θ+j=1nbij(s)k=1p(1+Iik)βij|yj(sτij(s))|βij/θ+j=1ncij(s)k=1p(1+Iik)γij0Kij(τ)|yj(s+τ)|γij/θdτdsθ1δi0ω|yi|0j=1naijM|yj|0αij/θ+j=1nbijM|yj|0βij/θ+j=1ncijM0Kij(τ)|yj|0γij/θdτdsθωy1δij=1naijMyαij/θ+j=1nbijMyβij/θ+j=1ncijMyγij/θθωy1δij=1naijMy+j=1nbijMy+j=1ncijMy=θωr121δij=1n(aijM+bijM+cijM)θωr11δij=1n(aijM+bijM+cijM)×1δiθωj=1n(aijM+bijM+cijM)+1<r1=u, which indicates that (11) Φu<u,uKΩ1.(11) On the other hand, for all uKΩ2, namely, y=r2>1, according to (H1)(H4) and Lemma 2.4–2.5 and noticing that αij/θ1, βij/θ1 and γij/θ1,i,j=1,2,,n, we obtain |(Φiy)(t)|=θtt+ωGi(t,s)yi(s)Hi(s,y(s))dsθδi1δi0ωyi(s)Hi(s,y(s))ds=θδi1δi0ωyi(s)j=1naij(s)0<tk<s(1+Iik)αijyjαij/θ(s)+j=1nbij(s)0<tk<s(1+Iik)βijyjβij/θ(sτij(s))+j=1ncij(s)0<tk<s(1+Iik)γij0Kij(τ)yjγij/θ(s+τ)dτdsθδi1δi0ωδiyj=1naij(s)k=1p(1+Iik)αij(δjy)αij/θ+j=1nbij(s)k=1p(1+Iik)βij(δjy)βij/θ+j=1ncij(s)k=1p(1+Iik)γij0Kij(τ)(δjy)γij/θdτdsθωδi2y1δij=1naijlδjαij/θyαij/θ+j=1nbijlδjβij/θyβij/θ+j=1ncijlδjγij/θyγij/θθωδi2y1δij=1naijlδjαij/θy+j=1nbijlδjβij/θy+j=1ncijlδjγij/θy=θωδi2r221δij=1naijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θθωδi2r21δij=1naijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θ×1δiθωδi2j=1n(aijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θ)=r2=u, which implies that (12) Φuu,uKΩ2.(12) From Equations (Equation11)–(Equation12),we know that condition (i) of Lemma 2.5 holds. By Lemma 2.6, we see that Φ has at least one non-zero fixed point y¯(t)=(y¯1(t),y¯2(t),,y¯n(t))TK(Ω¯2Ω1). Therefore, system (Equation6) has at least one positive ω-periodic solution y¯(t)=(y¯1(t),y¯2(t),,y¯n(t))TK(Ω¯2Ω1). Thus, (x¯1(t),x¯2(t),,x¯n(t))T=(y¯11/θ(t),y¯21/θ(t),,y¯n1/θ(t))T is a positive ω-periodic solution of system (Equation5). From Lemma 2.1, we know that u¯i(t)=0<tk<t(1+Iik)x¯i(t)=0<tk<t(1+Iik)y¯i1/θ(t)(i=1,2,,n) is a positive ω-periodic solution of system (Equation1). This completes the proof of Theorem 3.1.

4. Global exponential stability

The aim of this section is to derive the sufficient condition of a unique globally exponentially stable positive periodic solution of (Equation1).

According to Lemma 2.1, we know that the global exponential stability of positive periodic solution for system (Equation1) and system (Equation5) is equivalent. So we are mainly prepared to investigate the global exponential stability of positive periodic solution for system (Equation5). Under the assumption of Theorem 3.1, we find that system (Equation5) has at least one positive ω-periodic solution (x¯1(t),x¯2(t),,x¯n(t))T and there exist positive constants C_i,C¯i such that C_ix¯i(t)C¯i, where C_i=((1δi)/θωj=1n(aijM+bijM+cijM)+1)1/θ, C¯i=[(θωδi2/(1δi))j=1n(aijlδjαij/θ+bijlδjβij/θ+cijlδjγij/θ)]1/θ, i=1,2,,n. Now let ρ be a positive constant satisfying 0<ρ<min1in{C_i}. We assume further that

  1. τik(t) (i,j=1,2,,n)C1(R,R+) satisfy 0τik(t)<1 (i=1,2,,n).

  2. αiimax1jn{αij,βij,γij}, i=1,2,,n.

  3. αiiρaiiMmω<tk<t(1+Iik)αii+j=1, jinαjjραji/αjjajiMmω<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiMmω<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiMmω<tk<t(1+Ijk)γji<0, where m=[t/ω], i=1,2,,n.

Making the change of variable zi(t)=(1/ρ)xiαii(t), i=1,2,,n, then system (Equation5) is transformed into (13) zi(t)=αiizi(t)ri(t)j=1naij(t)0<tk<t(1+Iik)αijραij/αiizjαij(t)j=1nbij(t)0<tk<t(1+Iik)βijρβij/αii×zjβij/αii(tτij(t))j=1ncij(t)0<tk<t(1+Iik)γij0Kij(s)ργij/αiizjγij/αii(t+s)ds.(13) Obviously, z¯(t)=(z¯1(t),z¯2(t),,z¯n(t))T is the positive ω-periodic solution of system (Equation13), where z¯i(t)=(1/ρ)x¯iαii(t), i=1,2,,n. From Theorem 3.1, we know that C_i<x¯i(t)<C¯i (i=1,2,,n). Therefore, (14) 1<1ρC_iαiiz¯i(t)1ρC¯iαii,i=1,2,,n.(14)

Theorem 4.1

If (H1)(H6) hold, then system (Equation1) exists a unique positive periodic solution which is globally exponentially stable.

Proof.

According to conditions (H1)(H3), it follows from Theorem 3.1 that system (Equation13) has a positive periodic solution z¯(t)=(z¯1(t),z¯2(t),,z¯n(t))T. Let z(t)=(y1(t),z2(t), ,zn(t))T be any positive solution of system (Equation13). Now we construct a Lyapunov functional V(t)=V1(t)+V2(t), where (15) V1(t)=i=1n|lnzi(t)lnz¯i(t)|(15) and (16) V2(t)=i=1nj=1nαiiρβij/αiibikM0<tk<t(1+Iik)βijtτij(t)tzjβij/αii(s)z¯jβij/αii(s)ds+i=1nj=1nαiiργij/αiicijM×0<tk<t(1+Iik)γij0Kij(s)ttszjγij/αii(τ+s)z¯jγij/αii(τ+s)dτds.(16) From the definition of V(t), we easily see that V(0)<+ and V(t)V1(t). By direct computation, we find that (17) D+(|lnzi(t)lnz¯i(t)|)αiiρaiiM0<tk<t(1+Iik)αii|zi(t)z¯i(t)|+j=1,jinαiiραij/αiiaijM×0<tk<t(1+Iik)αijzjαij/αii(t)z¯jαij/αii(t)+j=1nαiiρβij/αiibijM×zjβij/αii(tτij(t))z¯jβij/αii(tτij(t))×0<tk<t(1+Iik)βij+j=1nαiicijM0<tk<t(1+Iik)γij0Kij(s)ργij/αii×zjγij/αii(t+s)z¯jγij/αii(t+s)ds.(17) By the condition (H4), we obtain (18) tτik(t)tzjβij/αii(s)z¯jβij/αii(s)ds=zjβij/αii(t)z¯jβij/αii(t)zjβij/αii(tτij(t))z¯jβij/αii(tτij(t))×(1τij(t))zjβij/αii(t)z¯jβij/αii(t)zjβij/αii(tτij(t))z¯jβij/αii(tτij(t))(18) and (19) ttszjγij/αii(τ+s)z¯jγij/αii(τ+s)dτ=zjγij/αii(t)z¯jγij/αii(t)zjγij/αii(t+s)z¯jγij/αii(t+s).(19) By (H5), we have 0<αij/αii,βij/αii,γij/αii1. Observe that g(x)=|axbx| is an increasing function for a1 and x>0. Therefore, according to Equations (Equation13)–(Equation19), we derive (20) D+V(t)i=1nαiiρaiiM0<tk<t(1+Iik)αii|zi(t)z¯i(t)|+j=1,jinαjjραji/αjjajiM0<tk<t(1+Ijk)αji×ziαji/αjj(t)z¯iαji/αjj(t)+j=1nαjjρβji/αjjbjiM0<tk<t(1+Ijk)βjiziβji/αjj(t)z¯iβji/αjj(t)+j=1nαjjργji/αjjcjiM0<tk<t(1+Ijk)γji0Kji(s)ziγji/αjj(t)z¯iγji/αjj(t)dsi=1nαiiρaiiM0<tk<t(1+Iik)αii|zi(t)z¯i(t)|+j=1,jinαjjραji/αjjajiM0<tk<t(1+Ijk)αji×zi(t)z¯i(t)+j=1nαjjρβji/αjjbjiM0<tk<t(1+Ijk)βjizi(t)z¯i(t)+j=1nαjjργji/αjjcjiM0<tk<t(1+Ijk)γji0Kji(s)zi(t)z¯i(t)ds=i=1nαiiρaiiM0<tk<t(1+Iik)αii+j=1,jinαjjραji/αjjajiM0<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiM×0<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiM0<tk<t(1+Ijk)γjizi(t)z¯i(t)=i=1nαiiρaiiMmω<tk<t(1+Iik)αii+j=1, jinαjjραji/αjjajiMmω<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiM×mω<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiMmω<tk<t(1+Ijk)γjizi(t)z¯i(t),(20) where m=[t/ω]. In addition, from the condition (H6), there exists a positive constant κ such that (21) αiiρaiiMmω<tk<t(1+Iik)αii+j=1,jinαjjραji/αjjajiMmω<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiM×mω<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiMmω<tk<t(1+Ijk)γji+κ<0.(21) Equations (Equation20) and (Equation21) give (22) D+V(t)κi=1n|zi(t)z¯i(t)|.(22) Integrating both sides of Equation (Equation22) with respect to t, we have (23) V(t)+κ0ti=1n|zi(s)z¯i(s)|dsV(0)<+,t0.(23) Equation (Equation23) leads to (24) 0ti=1n|zi(s)z¯i(s)|dsV(0)κ<+,t0,(24) which implies that (25) i=1n|zi(s)z¯i(s)|L1[0,+).(25) Equation (Equation14) indicates that z¯i(t) (h=1,2,,n) is uniformly bounded from below and above, and so lnz¯i(t) is bounded. From |lnzi(t)lnz¯i(t)|V1(t)V(t)V(0), we get (26) z¯i(t)eV(0)zi(t)z¯i(t)eV(0).(26) Equations (Equation26) and (Equation14) show that zi(t),z¯i(t), h=1,2,,n are uniformly bounded. This fact together with (Equation13) lead to zi(t),z¯i(t), i=1,2,,n are uniformly bounded on [0,+). Therefore i=1n|zi(s)z¯i(s)| is uniformly continuous on [0,+). From Equation (Equation24) we know that i=1n|zi(s)z¯i(s)| is integrable on [0,+). By Barbalat's Lemma [Citation8, Lemmas 1.2.2 and 1.2.3], we can conclude that (27) limt+|zi(t)z¯i(t)|=0,i=1,2,,n.(27) Thus, we have proved that the positive ω-periodic solution (z¯1(t),z¯2(t),,z¯n(t))T of system (Equation13) is globally attractive.

Next, we shall prove that the positive ω-periodic solution (z¯1(t),z¯2(t),,z¯n(t))T of system (Equation13) is globally exponentially stable. In fact, in the light of Equations (Equation14) and (Equation27), we know that for any ε>0 (ϵ enough small), there exists T>0 such that for t>T (28) 1<1ρC_iαiiεz¯i(t)ε<zi(t)z¯i(t)+ε<1ρC¯iαii+ε.(28) By Equation (Equation28) and the mean value theorem of calculous, we have (29) |lnzi(t)lnz¯i(t)|=1ξi|zi(t)z¯i(t)||zi(t)z¯i(t)|1ρC_iαiiε,i=1,2,,n,(29) where ξi(i=1,2,,n) lies between zi(t) and z¯i(t). According to (H6), there exists a constant μ>0 such that (30) αiiρaiiMmω<tk<t(1+Iik)αii+j=1,jinαjjραji/αjjajiMmω<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiM×mω<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiMmω<tk<t(1+Ijk)γji+μ1ρC_iαiiε<0.(30) Construct Lyapunov functional W(t)=eμtV1(t)+V2(t). Applying Equations (Equation20) and (Equation30), we have (31) D+W(t)i=1nαiiρaiiMmω<tk<t(1+Iik)αii+j=1, jinαjjραji/αjjajiMmω<tk<t(1+Ijk)αji+j=1nαjjρβji/αjjbjiMmω<tk<t(1+Ijk)βji+j=1nαjjργji/αjjcjiMmω<tk<t(1+Ijk)γji+μ1ρC_iαiiε×|zi(t)z¯i(t)|<0.(31) Equation (Equation31) means that (32) W(t)<W(T)=eμTV1(T)+V2(T)eμTV(T)eμTV(0),t>0.(32) Similar to Equations (Equation28)–(Equation29), we also have (33) |lnzi(t)lnz¯i(t)|>|zi(t)z¯i(t)|1ρC¯iαii+ε,i=1,2,,n.(33) Equations (Equation32) and (Equation33) lead to eμt1ρC¯iαii+ε|zi(t)z¯i(t)|eμti=1n|zi(t)z¯i(t)|1ρC¯iαii+ε<eμti=1n|lnzi(t)lnz¯i(t)|=eμtV1(t)W(t)<eμTV(0),i=1,2,,n. Letting ε0+ in the above inequality, we have (34) |zi(t)z¯i(t)|<Meμt,i=1,2,,n,t>0,(34) where M=eμTV(0)max1in{(1/ρ)C¯iαii}. Equation (Equation34) indicates that the unique positive ω-periodic solution (z¯1(t),z¯2(t),,z¯n(t))T of system (Equation13) is globally exponentially stable.

Now let us to show that the unique positive ω-periodic solution (u¯1(t),u¯2(t),,u¯n(t))T of system (Equation1) is globally exponentially stable.

Indeed, by the mean value theorem of calculous and Equation (Equation28), we have (35) |xi(t)x¯i(t)|=ρ1/αiizi1/αii(t)z¯i1/αii(t)Ni(ε)αiiρ1/αiizi(t)z¯i(t),i=1,2,,n,(35) where Ni(ε)=max1ρC_iαiiε(1αii)/αii, 1ρC¯iαii+ε(1αii)/αii,i=1,2,,n. Letting ε0+ in Equation (Equation35) and employing (Equation34), we obtain (36) |xi(t)x¯i(t)|<Meμt,i=1,2,,n,t>0,(36) where M=Mmax1in{(Ni(0)/αii)ρ1/αii}. In view of Lemma 2.1, we find from Equation (Equation36) that (37) |ui(t)u¯i(t)|=0<tk<t(1+Iik)xi(t)0<tk<t(1+Iik)x¯i(t)=mω<tk<t(1+Iik)xi(t)x¯i(t)<mω<tk<t(1+Iik)Meμt=Meμt,i=1,2,,n,t>0,(37) where m=[t/ω], M=mω<tk<t(1+Iik)M. It is worth noticing that 0<tk<ω(1+Iik)=k=1p(1+Iik)=1. So mω<tk<t(1+Iik)<+. Therefore, M>0 is a constant. Thus, we have proved that the unique positive ω-periodic solution (u¯1(t),u¯2(t),,u¯n(t))T of system (Equation1) is globally exponentially stable. The proof of Theorem 4.1 is complete.

5. Illustrative example

Consider the following single species Gilpin–Ayala competition model with time delay (38) u(t)=u(t)r(t)a(t)uα(t)b(t)uβ(tτ(t))c(t)0K(s)uγ(t+s)ds,u(tk+)=u(tk)+Iku(tk),k=1,2,,(38) where r(t)=|sint|, a(t)=(82+sint)/π, b(t)=(3+|cos2t|)/π, c(t)=(3sin3t)/π, K(s)=es, α=ln3, β=ln2, γ=12, tk=2+(1)k and Ik=2,k is odd,23,k is even,,kN+,τ(t)=1+sint2,2κππ2t2κπ+π2,κ=Z,1sint2,2κπ+π2t2κπ+3π2,κ=Z. Obviously, r(t),a(t),b(t),c(t),τ(t) are all positive continuous 2π-periodic functions. By the simple computation, we have θ=min{α,β,γ}=12, δ=eθ02πr(s)ds=e2, aM=83/π, al=81/π, bM=4/π, bl=3/π, cM=4/π, cl=2/π, 0K(s)ds=1 and C_=1δθω(aM+bM+cM)+11/θ0.0095,C¯=θωδ21δaijlδα/θ+blδjβ/θ+clδjγ/θ1/θ1047.3288,θωδ21δalδα/θ+blδβ/θ+clδγ/θ0.0309<1, Thus, the assumptions (H1)(H3) are satisfied. So we conclude from Theorem 3.1 that system (Equation38) has at least one positive 2π periodic solution u¯(t) satisfying 0.0285u¯(t)3141.9864.

In addition, clearly 0<1τ(t)=1|cost|/2<1, α=ln3>max{β,γ}=ln2, p=2, k=12(1+I1)(1+I2)=(1+2)(123)=1. Take ρ=0.009<C_, we have αρaMmω<tk<t(1+Iik)α+αρβ/αbMmω<tk<t(1+Ijk)β+αργ/αcMmω<tk<t(1+Ijk)γ0.436<0. Thus we verify that (H4)(H6) hold. Therefore, According to Theorem 4.1, we assert that the unique positive 2π-periodic solution u¯(t) of system (Equation38) is globally exponentially stable.

Acknowledgements

The author thanks the referees for a number of suggestions which have improved many aspects of this article.

Disclosure statement

No potential conflict of interest was reported by the author.

Additional information

Funding

This work is supported by the National Natural Sciences Foundation of People's Republic of China [Grant Nos 11161025, 11661047].

References

  • X. Ai and Y. Sun, An optimal stopping problem in the stochastic Gilpin–Ayala population model, Adv. Differ. Equ. 2012 (2012). Article ID 210 (8 pages). doi: 10.1186/1687-1847-2012-210
  • F.J. Ayala, M.E. Gilpin, and J.G. Eherenfeld, Competition between species: Theoretical models and experimental tests, Theor. Popul. Biol. 4 (1973), pp. 331–356. doi: 10.1016/0040-5809(73)90014-2
  • F. Chen, Some new results on the permanence and extinction of nonautonomous Gilpin–Ayala type competition model with delays, Nonlinear Anal. 7(5) (2006), pp. 1205–1222. doi: 10.1016/j.nonrwa.2005.11.003
  • F. Chen, X. Xie, and J. Shi, Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays, J. Comput. Appl. Math. 194 (2006), pp. 368–387. doi: 10.1016/j.cam.2005.08.005
  • H. Fang, Multiple positive periodic solutions for a food-limited two-species Gilpin–Ayala competition patch system with periodic harvesting terms, J. Inequal. Appl. 2012 (2012). Article ID 291 (17 pages). doi: 10.1186/1029-242X-2012-291
  • H. Fang and Y. Wang, Four periodic solutions for a food-limited two-species Gilpin–Ayala type predator–prey system with harvesting terms on time scales, Adv. Differ. Equ. 2013 (2013), Article ID 278 (15 pages).
  • M.E. Gilpin and F.J. Ayala, Global models of growth and competition, Proc. Natl. Acad. Sci. 70 (1973), pp. 3590–3593. doi: 10.1073/pnas.70.12.3590
  • K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Press, Dordrecht/Norwell, 1992.
  • D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Mathematics and its Applications, Vol. 373, Kluwer Academic, Dordrecht, 1996.
  • M. He, Z. Li, and F. Chen, Permanence, extinction and global attractivity of the periodic Gilpin–Ayala competition system with impulses, Nonlinear Anal. 11 (2010), pp. 1537–1551. doi: 10.1016/j.nonrwa.2009.03.007
  • C. Huang and J. Cao, Impact of leakage delay on bifurcation in high-order fractional BAM neural networks, Neural Netw. 98 (2018), pp. 223–235. doi: 10.1016/j.neunet.2017.11.020
  • C. Huang, J. Cao, and M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos Solitons Fractals 87 (2016), pp. 19–29. doi: 10.1016/j.chaos.2016.02.036
  • C. Huang, J. Cao, M. Xiao, A. Alsaedi, and T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput. 292 (2017), pp. 210–227.
  • C. Huang, J. Cao, M. Xiao, A. Alsaedi, and F. Alsaadi, Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders, Appl. Math. Comput. 293 (2017), pp. 293–310.
  • C. Huang, J. Cao, M. Xiao, A. Alsaedi, and F.E. Alsaadi, New bifurcation results for fractional BAM neural network with leakage delay, Chaos Solitons Fractals 100 (2017), pp. 31–44. doi: 10.1016/j.chaos.2017.04.037
  • C. Huang, J. Cao, M. Xiao, A. Alsaedi, and T. Hayat, Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons, Commun. Nonlinear Sci. Numer. Simul. 57 (2018), pp. 1–13. doi: 10.1016/j.cnsns.2017.09.005
  • B. Lian and S. Hu, Asymptotic behaviour of the stochastic Gilpin–Ayala competition models, J. Math. Anal. Appl. 339 (2008), pp. 419–428. doi: 10.1016/j.jmaa.2007.06.058
  • Q. Liu, Asymptotic properties of a stochastic n-species Gilpin–Ayala competitive model with Lévy jumps and Markovian switching, Commun. Nonlinear Sci. Numer. Simul. 26(1–3) (2015), pp. 1–10. doi: 10.1016/j.cnsns.2015.01.007
  • H. Lu and G. Yu, Permanence of a Gilpin–Ayala predator–prey system with time-dependent delay, Adv. Differ. Equ. 2015 (2015). Article ID 109 (15 pages).
  • A. Settati and A. Lahrouz, On stochastic Gilpin–Ayala population model with Markovian switching, Biosystems 130 (2015), pp. 17–27. doi: 10.1016/j.biosystems.2015.01.004
  • D. Wang, Dynamic behaviors of an obligate Gilpin–Ayala system, Adv. Differ. Equ. 2016 (2016). Article ID 270 (10 pages).
  • R. Wu, X. Zou, and K. Wang, Asymptotic properties of stochastic hybrid Gilpin–Ayala system with jumps, Appl. Math. Comput. 249 (2014), pp. 53–66.
  • Y. Xing, M. Han, and G. Zheng, Initial value problem for first-order integro-differential equation of Volterra type on time scales, Nonlinear Anal. 60 (2005), pp. 429–442.
  • K. Zhao and Y. Ren, Existence of positive periodic solutions for a class of Gilpin–Ayala ecological models with discrete and distributed time delays, Adv. Differ. Equ. 2017 (2017), Article ID 331 (13 pages).