590
Views
5
CrossRef citations to date
0
Altmetric
2019 Guangzhou Workshop

Global convergence dynamics of almost periodic delay Nicholson's blowflies systems

, &
Pages 633-655 | Received 30 Mar 2020, Accepted 17 Jul 2020, Published online: 03 Aug 2020

Abstract

We take into account nonlinear density-dependent mortality term and patch structure to deal with the global convergence dynamics of almost periodic delay Nicholson's blowflies system in this paper. To begin with, we prove that the solutions of the addressed system exist globally and are bounded above. What's more, by the methods of Lyapunov function and analytical techniques, we establish new criteria to check the existence and global attractivity of the positive asymptotically almost periodic solution. In the end, we arrange an example to illustrate the effectiveness and feasibility of the obtained results.

AMS(2000) Subject Classifications:

This article is part of the following collections:
Mathematical Modeling and Analysis of Populations and Infectious Diseases

1. Introduction

There has been a growing concern that the dynamic model plays an important role in many fields including biology system, financial and economic network, physics, and engineering technology [Citation1,Citation11,Citation13,Citation15,Citation16,Citation22,Citation41]. In order to describe the oscillatory fluctuations of the laboratory population of the Australian sheep blowfly Lucilia cuprina, Gurney et al. [Citation7] proposed the following delay Nicholson's blowflies equation: (1) dN(t)dt=δN(t)+PN(tTD)e(N(tTD)/ND).(1) Biologically, N(t) represents the size of sexually mature adults at time t, the per capita adult death rate with density-independent value equals δ, TD is the generation time from eggs to sexually mature adults, and P denotes the maximum possible per capita daily egg production rate. The birth function gets the maximum reproduction value with N=1ND. The delay Nicholson's blowflies equation offers a suitable benchmark for describing a ‘humped’ relationship between future recruitment and current population as it presents abundant dynamics characteristics, such as global attractivity, complex oscillations and even chaotic behaviour [Citation2,Citation9,Citation10,Citation14,Citation21,Citation23,Citation25,Citation29,Citation31,Citation36,Citation39,Citation42].

In biological system, the stability and instability of population-dynamics process are essentially influenced by the interaction of trophodynamic interactions among individuals [Citation26]. Considering that the lethal fighting or cannibalism is usually inevitable, it is more reasonable to introduce a nonlinear (density-dependent) mortality term to the population model [Citation28]. In addition, some cases of patchiness caused by diffusion instability occur in natural populations [Citation27]. Naturally, by introducing nonlinear density-dependent mortality term and patch structure, the following revised Nicholson's blowflies systems with the Rickers type birth function and the harvesting strategy Type II (cyrtoid) (2) xi(t)=aii(t)xi(t)bii(t)+xi(t)+j=1,jinaij(t)xj(t)bij(t)+xj(t)+j=1mβij(t)xi(tτij(t))eγij(t)xi(tτij(t)),(2) were proposed in the pioneering works [Citation3,Citation19,Citation34], where iQ={1,2,,n}, in ith patch, (aii(t)xi(t))/(bii(t)+xi(t)) is the death rate; βij(t)xi(tτij(t))eγij(t)xi(tτij(t)) is the birth function involving maturation delays τij(t) and gets the maximum reproduce value with xi(tτij(t))=(1/γij(t)); for i,jQ and ji, (aij(t)xj(t)/(bij(t)+xj(t))) denotes cooperative connection weight of the populations ith patch and jth patch. Please refer to [Citation5,Citation17,Citation35].

The periodic phenomenon in population dynamics has become a hot topic in recent years, yet there is almost no phenomenon that is purely periodic, and the almost periodic phenomenon is obviously more common [Citation4,Citation18,Citation24]. Consequently, the almost periodic problems for delay Nicholson's blowflies equation and its variants have been intensively investigated in [Citation12,Citation33,Citation37,Citation40]. In particular, if there exists a positive constant M>κ such that the following conditions hold: (3) γij(t)Mκ~,for all tR,iQ,jI={1,2,,m},(3) (4) suptR{aii(t)Mbii(t)+M+j=1,jinaij(t)+j=1mβij(t)γij(t)1e}<0,iQ,(4) (5) inftR,s[0,κ]{aii(t)bii(t)+s+j=1,jinaij(t)bij(t)+M+j=1mβij(t)γij(t)es}>0,iQ,(5) (6) suptR{aii(t)bii(t)(bii(t)+M)2+j=1,jinaij(t)bij(t)(bij(t)+κ)2+1e2j=1mβij(t)}<0,iQ,(6) where (7) κ(0,1),1κeκ=1e2,κ~(1,+),κeκ=κ~eκ~,κ0.7215,κ~1.3423,(7) the authors in [Citation20] built the existence and global stability of almost periodic solutions for system (Equation2). Unfortunately, conditions (Equation4)–(Equation6) have considerable limitations and are not consistent with the actual biological significance. Just as shown in [Citation33,Citation40], for a better biological interpretation, it may be a good choice to replace (Equation4)–(Equation6) with the following relaxed conditions: (8) Mlim supt+γij(t)κ~,for all iQ,jI,(8) (9) supt[t0,+){aii(t)Mbii(t)+M+j=1,jinaij(t)+j=1mβij(t)γij(t)1e}<0,iQ,(9) (10) infs[0,κ]lim inft+{aii(t)bii(t)+s+j=1,jinaij(t)bij(t)+M+j=1mβij(t)γij(t)es}>0,iQ,(10) (11) lim supt+{aii(t)bii(t)(bii(t)+M)2+j=1,jinaij(t)bij(t)(bij(t)+κ)2+1e2j=1mβij(t)}<0,iQ.(11) It is a great pity that (12) 0<lisuptR,s[0,κ]{aii(t)bii+s+j=1,jinaij(t)bij+M+j=1mβij(t)γij(t)es}0,(12) appears to be a contradiction, and more details can be found in page 497 of [Citation20]. Furthermore, since li>0 has not been proved in [Citation20], the above contradiction is not clear. Similarly, li>0 has not been proved successfully in page 189 of [Citation40] where the author used limt+N(π(t))=0 and π(t)>t0,jI, ah(π(t))N(π(t))bh(π(t))βjh(π(t))N(π(t)σjh(π(t)))eγjh(π(t))N(π(t)σjh(π(t))), to show limt+N(π(t)σjh(π(t)))=0,jI. Obviously, the above certification process requires the following statement: lim inft+βjh(t)>0,jI. Sparked by the above reasons and discussions, we try to search a novel proof to investigate the existence and global attractivity of the positive asymptotically almost periodic solutions for system (Equation2) under weaker conditions (Equation8)–(Equation11). In particular, we will correct the above-mentioned mistakes.

The rest of the proposed work is furnished as follows: In Section 2, some necessary definitions are listed. Further, some basic assumptions and three beneficial lemmas needed in this paper are given. The main results with the existence and global convergence of asymptotically almost periodic solutions are established in Section 3. A numerical example and its computer simulation are provided to illustrate the effectiveness of the acquired results in Section 4. At last, conclusions are drawn in Section 5.

2. Preliminary results

Throughout this paper, it will be assumed that there exists t0~>t0 such that, for iQ,jI, (13) σi=maxjIsuptRτij(t)>0,inftt0~γij(t)1,inftt0~γijh(t)1,(13) which is a weaker condition than inftRγij(t)1 that adopted in [Citation20,Citation37]. As usual, we also define |x|=(|x1|,,|xn|) and ||x||=maxiQ|xi| for x=(x1,,xn)Rn. Let R+=[0,+), and C+=i=1nC([σi,0],R+). For J,J1,J2R, denote W0(R+,J)={ν:νC(R+,J),limt+ν(t)=0}, and the collection of all bounded and continuous functions from J1 to J2 is denoted by BC(J1,J2).

Definition 2.1

see [Citation6,Citation43]

If there exists a number l>0 such that [t,t+l]P (tR), then we say that the subset P of R is relatively dense in R. If for any ϵ>0, the set T(u,ϵ)={δ:|u(t+δ)u(t)|<ϵ,tR} is relatively dense, then uBC(R,J) is said to be almost periodic on R.

Definition 2.2

see [Citation6,Citation43]

If there exist an almost periodic function h and a continuous function gW0(R+,J) such that u = h + g, then we say that uC(R+,J) is asymptotically almost periodic.

For JR, we use AP(R,J) to present the set of the almost periodic functions from R to J. We label AAP(R,J) as the set of all asymptotically almost periodic functions. What's more, according to [Citation6,Citation43], AP(R,J) should be a proper subspace of AAP(R,J).

Remark 2.1

see p. 64, Remark 5.16 in [Citation43]

The decomposition given in Definition 2.2 is unique.

Hereafter, we assume that aii,bii,γijAAP(R,(0,+)), aij(ij),bij(ij),βij,τijAAP(R,R+) and aij=aijh+aijg,bij=bijh+bijg,βij=βijh+βijg,γij=γijh+γijg,τij=τijh+τijg, where aiih,biih, γijhAP(R,(0,+)), aijh(ij),bijh(ij), βijh, τijhAP(R,R+), aijg,bijg,βijg,γijg,τijgW0(R+,R+), and iQ,jI.

To proceed further, we need to introduce a nonlinear almost periodic differential system: (14) xi(t)=aiih(t)xi(t)biih(t)+xi(t)+j=1,jinaijh(t)xj(t)bijh(t)+xj(t)+j=1mβijh(t)xi(tτijh(t))eγijh(t)xi(tτijh(t)),iQ.(14) It will be considered the following admissible initial value conditions (IVC): (15) xi(t0+θ)=φi(θ),θ[σi,0],φ=(φ1,,φn)C+andφi(0)>0,iQ.(15)

Lemma 2.1

Denote x(t;t0,φ) as a solution of (Equation14) with respect to the IVC (Equation15). Suppose that there is a positive constant M>κ such that (Equation8), (Equation10) and the following inequality (16) supt[t0,+){aiih(t)Mbiih(t)+M+j=1,jinaijh(t)+j=1mβijh(t)γijh(t)1e}<0,iQ(16) hold. Then x(t)=x(t;t0,φ) exists on [t0,+), and there is tφ[t0,+) such that (17) κ<xi(t)<Mfor allt[tφ,+),iQ.(17)

Proof.

First, we claim that (18) xi(t)>0for all t[t0,η(φ)),iQ,(18) where [t0,η(φ)) is the maximal right existence interval of x(t). Otherwise, one can choose i0Q and t¯i0(t0,η(φ)) to satisfy that xi0(t¯i0)=0,xj(t)>0 for all t[t0,t¯i0),jQ. For t[t0,t¯i0), from the fact that xi0(t0)=φi0(0)>0,xi0(t)ai0i0h(t)bi0i0h(t)xi0(t)+j=1mβi0jh(t)xi0(tτi0jh(t))eγi0jh(t)xi0(tτi0jh(t)), we obtain 0=xi0(t¯i0)et0t¯i0((ai0i0h(u))/(bi0i0h(u)))duxi0(t0)+et0t¯i0((ai0i0h(u))/(bi0i0h(u)))du×t0t¯i0et0s((ai0i0h(v))/(bi0i0h(v)))dvj=1mβi0jh(s)xi0(sτi0jh(s))eγi0jh(s)xi0(sτi0jh(s))ds>0, which is a contradiction and results the above statement. Now, we demonstrate that x(t) is bounded on [t0,η(φ)). For t[t0σi,η(φ)) and iQ, define Mi(t)=max{ξ:ξt,xi(ξ)=maxt0σistxi(s)}. Suppose that x(t) is unbounded on [t0,η(φ)). Then, we can choose iQ and a strictly monotone increasing sequence {ζn}n=1+ such that xi(Mi(ζn))=maxjQ{xj(Mj(ζn))},limn+xi(Mi(ζn))=+,limn+ζn=η(φ), and then (19) limn+Mi(ζn)=η(φ).(19) It follows that there exists n>0 satisfying Mi(ζn)>t0,xi(Mi(ζn))>Mfor all n>n. According to supu0ueu=1/e, it follows from (Equation14) and (Equation19) that, for all n>n, 0xi(Mi(ζn))=aiih(Mi(ζn))xi(Mi(ζn))biih(Mi(ζn))+xi(Mi(ζn))+j=1,jinaijh(Mi(ζn))xj(Mi(ζn))bijh(Mi(ζn))+xj(Mi(ζn))+j=1mβijh(Mi(ζn))γijh(Mi(ζn))γijh(Mi(ζn))xi(Mi(ζn)τijh(Mi(ζn)))×eγijh(Mi(ζn))xi(Mi(ζn)τijh(Mi(ζn)))aiih(Mi(ζn))Mbiih(Mi(ζn))+M+j=1,jinaijh(Mi(ζn))+j=1mβijh(Mi(ζn))γijh(Mi(ζn))1esupt[t0,+){aiih(t)Mbiih(t)+M+j=1,jinaijh(t)+j=1mβijh(t)γijh(t)1e}<0, which is absurd and suggests that x(t) is bounded on [t0,η(φ)). By Theorem 2.3.1 in [Citation8], one can easily show that η(φ)=+. Hereafter, we validate that (Equation17) is true.

Designate il,iLQ such that l=lim inft+xil(t)=miniQlim inft+xi(t),L=lim supt+xiL(t)=maxiQlim supt+xi(t). By the fluctuation lemma (please see [Citation30], Lemma A.1.), one can find a sequence {tk}k=1+ such that (20) limk+tk=+,limk+xiL(tk)=L=lim supt+xiL(t),limk+xiL(tk)=0.(20) From the almost periodicity of (Equation14), we can select a subsequence of {k}k1, still denoted by {k}k1, such that for all jQ,qI, the limits limk+aiLjh(tk), limk+biLjh(tk),limk+βiLqh(tk),limk+γiLqh(tk),limk+xj(tk) and limk+xiL(tkτiLqh(tk)) exist.

Furthermore, by taking limits, we have from (Equation16) and (Equation20) that supt[t0,+){aiLiLh(t)MbiLiLh(t)+M+j=1,jiLnaiLjh(t)+j=1mβiLjh(t)γiLjh(t)1e}<0=limk+xiL(tk)=limk+aiLiLh(tk)Llimk+biLiLh(tk)+L+j=1,jiLnlimk+aiLjh(tk)limk+xj(tk)limk+biLjh(tk)+limk+xj(tk)+j=1mlimk+βiLjh(tk)γiLjh(tk)limk+γiLjh(tk)xiL(tkτiLjh(tk))×elimk+γiLjh(tk)limk+xiL(tkτiLjh(tk))limk+aiLiLh(tk)Llimk+biLiLh(tk)+L+j=1,jiLnlimk+aiLjh(tk)Llimk+biLjh(tk)+L+j=1mlimk+βiLjh(tk)γiLjh(tk)1elimk+[aiLiLh(tk)LbiLiLh(tk)+L+j=1,jiLnaiLjh(tk)LbiLjh(tk)+L+j=1mβiLjh(tk)γiLjh(tk)1e]supt[t0,+){aiLiLh(t)LbiLiLh(t)+L+j=1,jiLnaiLjh(t)+j=1mβiLjh(t)γiLjh(t)1e}, which entails that L<M, and there exists t0t0 such that (21) xi(t)<M,for alltt0,iQ.(21) Next, we show that l>0. By way of contradiction, we assume that (22) lim inft+xil(t)=miniQlim inft+xi(t)=0.(22) Let ωi(t)=max{ξ:ξt,xi(ξ)=mint0stxi(s)} for each tt0. From (Equation22), one can choose iQ and a strictly monotone increasing sequence {ξn}n=1+ such that (23) xi(ωi(ξn))=minjQ{xj(ωj(ξn))},limn+xi(ωi(ξn))=0,limn+ξn=+,(23) and then limn+ωi(ξn)=+. According to (Equation8), (Equation13), (Equation21) and L<M, one can find n>0 such that, for n>n and jI, (24) ωi(ξn)>t0+σi,xi(ωi(ξn))<κ,γijh(ωi(ξn))1,(24) and (25) xi(ωi(ξn))γijh(ωi(ξn))xi(ωi(ξn)τijh(ωi(ξn)))κ~.(25) It follows from (Equation14), (Equation24) and (Equation25) that 0xi(ωi(ξn))aiih(ωi(ξn))xi(ωi(ξn))biih(ωi(ξn))+j=1,jinaijh(ωi(ξn))xj(ωi(ξn))bijh(ωi(ξn))+xj(ωi(ξn))+j=1mβijh(ωi(ξn))γijh(ωi(ξn))γijh(ωi(ξn))xi(ωi(ξn)τijh(ωi(ξn)))×eγijh(ωi(ξn))xi(ωi(ξn)τijh(ωi(ξn)))aiih(ωi(ξn))xi(ωi(ξn))biih(ωi(ξn))+j=1,jinaijh(ωi(ξn))xj(ωi(ξn))bijh(ωi(ξn))+M+j=1mβijh(ωi(ξn))γijh(ωi(ξn))xi(ωi(ξn))exi(ωi(ξn)),n>n, and aiih(ωi(ξn))biih(ωi(ξn))j=1,jinaijh(ωi(ξn))xj(ωi(ξn))xi(ωi(ξn))bijh(ωi(ξn))+M+j=1mβijh(ωi(ξn))γijh(ωi(ξn))exi(ωi(ξn))j=1,jinaijh(ωi(ξn))bijh(ωi(ξn))+M+j=1mβijh(ωi(ξn))γijh(ωi(ξn))exi(ωi(ξn)),n>n, which, together with (Equation10), yields 0lim infn+{aiih(ωi(ξn))biih(ωi(ξn))+j=1,jinaijh(ωi(ξn))bijh(ωi(ξn))+M+j=1mβijh(ωi(ξn))γijh(ωi(ξn))exi(ωi(ξn))}lim inft+{aiih(t)biih(t)+j=1,jinaijh(t)bijh(t)+M+j=1mβijh(t)γijh(t)}=lim inft+{aii(t)bii(t)+j=1,jinaij(t)bij(t)+M+j=1mβij(t)γij(t)}infs[0,κ]lim inft+{aii(t)bii(t)+s+j=1,jinaij(t)bij(t)+M+j=1mβij(t)γij(t)es}>0. This is a clear contradiction and thus l>0. Finally, we show that l>κ. Again employing the fluctuation lemma (please see [Citation30], Lemma A.1.) and the almost periodicity of (Equation14), we choose a sequence {tk}k=1+ such that (26) limk+tk=+,limk+xil(tk)=0,limk+xil(tk)=l=lim inft+xil(t),(26) and for all jQ,qI, the limits limk+ailjh(tk), limk+biljh(tk),limk+βilqh(tk),limk+γilqh(tk),limk+xj(tk) and limk+xil(tkτilqh(tk)) exist. Furthermore, for all jQ,qI, (27) llimk+xj(tk)L<M,llimk+γilqh(tk)limk+xil(tkτilq(tk))κ~.(27) Otherwise, one can assume that 0<lκ. With the help of (Equation7), (Equation10), (Equation16) and (Equation17), we obtain 0=limk+xil(tk)limk+aililh(tk)llimk+bililh(tk)+l+j=1,jilnlimk+ailjh(tk)llimk+biljh(tk)+M+j=1mlimk+βiljh(tk)limk+γiljh(tk)limk+γiljh(tk)xil(tkτiljh(tk))×elimk+γilj(tk)xil(tkτiljh(tk))limk+aililh(tk)llimk+bililh(tk)+l+j=1,jilnlimk+ailjh(tk)llimk+biljh(tk)+M+j=1mlimk+βiljh(tk)limk+γiljh(tk)lelllim inft+{aililh(t)bililh(t)+l+j=1,jilnailjh(t)biljh(t)+M+j=1mβiljh(t)γiljh(t)el}=llim inft+{ailil(t)bilil(t)+l+j=1,jilnailj(t)bilj(t)+M+j=1mβilj(t)γilj(t)el}linfs[0,κ]lim inft+{ailil(t)bilil(t)+s+j=1,jilnailj(t)bilj(t)+M+j=1mβilj(t)γilj(t)es}>0, which results a contradiction. Then we have l>κ. Hence, there exits tφ>t0 such that κ<xi(t;t0,φ)<Mfor allttφ,iQ. This completes the proof.

Similar to the proof of Lemma 2.1, we state the following Lemma 2.2 directly.

Lemma 2.2

Denote x(t)=x(t;t0,φ) as a solution of (Equation2) with respect to the IVC (Equation15). Suppose that there is a positive constant M>κ such that the conditions (Equation8), (Equation9) and (Equation10) hold. Then x(t) exists on [t0,+), κ<miniQlim inft+xi(t)maxiQlim supt+xi(t)<M, and there is tφ[t0,+) such that (28) κ<xi(t)<M \ for all \ t[tφ,+),iQ.(28)

Lemma 2.3

Suppose there is a positive constant M>κ such that (Equation8), (Equation10), (Equation11) and (Equation16) hold. In addition, if x(t)=x(t;t0,φ) is a solution of (Equation14) with respect to the IVC (Equation15), then, for any ϵ>0, one can pick a relatively dense subset Pϵ of R with the below property: for each δPϵ, there exists T=T(δ)>0 satisfying (29) x(t+δ)x(t)<ϵ2,for all t>T.(29)

Proof.

With the help of Lemma 2.1, (Equation11) and the fact that aijg,bijg,βijgW0(R+,R+), one can pick positive constants T1>max{0,tφ} and ζ such that, for all tT1,iQ, γijh(t)xi(tτijh(t))>κ, and aiih(t)biih(t)(biih(t)+M)2+j=1,jinaijh(t)bijh(t)(bijh(t)+κ)2+1e2j=1mβijh(t)<ζ, which implies there are two positive constants η>0, λ(0,1], such that for iQ, (30) supt[T1,+){[aiih(t)biih(t)(biih(t)+M)2λ]+j=1,jinaijh(t)bijh(t)(bijh(t)+κ)2+j=1mβijh(t)1e2eλσi}<η.(30) Define (31) xi(t)xi(t0σi), for all t(,t0σi],iQ,(31) and (32) Ai(δ,t)=[aiih(t+δ)xi(t+δ)biih(t+δ)+xi(t+δ)aiih(t)xi(t+δ)biih(t+δ)+xi(t+δ)][aiih(t)xi(t+δ)biih(t+δ)+xi(t+δ)aiih(t)xi(t+δ)biih(t)+xi(t+δ)]+j=1,jin[aijh(t+δ)xj(t+δ)bijh(t+δ)+xj(t+δ)aijh(t)xj(t+δ)bijh(t+δ)+xj(t+δ)]+j=1,jin[aijh(t)xj(t+δ)bijh(t+δ)+xj(t+δ)aijh(t)xj(t+δ)bijh(t)+xj(t+δ)]+j=1m[βijh(t+δ)βijh(t)]xi(t+δτijh(t+δ))×eγijh(t+δ)xi(t+δτijh(t+δ))+j=1mβijh(t)[xi(t+δτijh(t+δ))eγijh(t+δ)xi(t+δτijh(t+δ))xi(tτijh(t)+δ)eγijh(t+δ)xi(tτijh(t)+δ)]+j=1mβijh(t)[xi(tτijh(t)+δ)eγijh(t+δ)xi(tτijh(t)+δ)xi(tτijh(t)+δ)eγijh(t)xi(tτijh(t)+δ)], for all tR,iQ.(32) Again from Lemma 2.1, one can see that x(t) is bounded and the right side of (Equation14) is also bounded. It follows from (Equation31) that x(t) is uniformly continuous on R. Therefore, ϵ>0, we can choose a sufficiently small constant ϵ>0 such that from |aijh(t)aijh(t+δ)|<ϵ,|bijh(t)bijh(t+δ)|<ϵ,|βijh(t)βijh(t+δ)|<ϵ,|γijh(t)γijh(t+δ)|<ϵ,|τijh(t)τijh(t+δ)|<ϵ, it follows that (33) |Ai(δ,t)|<12ηϵ,tR,iQ,jI.(33) Furthermore, for ϵ>0, from the uniformly almost periodic family theory (please see Corollary 2.3 in page 19 of [Citation6] ), one can choose a relatively dense subset Pϵ of R such that (34) |aijh(t)aijh(t+δ)|<ϵ,|bijh(t)bijh(t+δ)|<ϵ,|βijh(t)βijh(t+δ)|<ϵ,|γijh(t)γijh(t+δ)|<ϵ,|τijh(t)τijh(t+δ)|<ϵ,(34) hold for δPϵ,tR,iQ,jI. Denote Pϵ=Pϵ, for any δPϵ. From (Equation33) and (Equation34), we gain (35) |Ai(δ,t)|<12ηϵ, \ for all \ tR,iQ.(35) Let Λ0max{|t0|+T1+maxiQσi,|t0|+T1+maxiQσiδ}. For tR, denote u(t)=(u1(t),u2(t),,un(t)),ui(t)=xi(t+δ)xi(t), and U(t)=(U1(t),U2(t),,Un(t)),Ui(t)=eλtui(t), where iQ. Let it be such an index that (36) |Uit(t)|=||U(t)||.(36) Then, for all tΛ0, we have (37) ui(t)=[aiih(t)xi(t+δ)biih(t)+xi(t+δ)aiih(t)xi(t)biih(t)+xi(t)]+j=1,jin[aijh(t)xj(t+δ)bijh(t)+xj(t+δ)aijh(t)xj(t)bijh(t)+xj(t)]+j=1mβijh(t)[xi(tτijh(t)+δ)eγijh(t)xi(tτijh(t)+δ)xi(tτijh(t))eγijh(t)xi(tτijh(t))]+Ai(δ,t).(37) From (Equation17), (Equation37) and the inequalities (38) (aiih(t)xbiih(t)+xaiih(t)ybiih(t)+y)sgn(xy)aiih(t)biih(t)(biih(t)+M)2|xy|,(38) for x,y[κ,M],iQ, (39) |aijh(t)xbiih(t)+xaiih(t)ybijh(t)+y|aijh(t)bijh(t)(bijh(t)+κ)2|xy|,(39) where x,y[κ,M],iQ,jI,ji, and (40) αeαβeβ|1e2|αβ|where α,β[κ,+),(40) we obtain (41) D(|Uis(s)|)|s=tλeλt|uit(t)|+eλt{[aitith(t)xit(t+δ)bitith(t)+xt(t+δ)aitith(t)xit(t)bitith(t)+xit(t)]×sgn(xit(t+δ)xit(t))+j=1,jitn|aitjh(t)xj(t+δ)bitjh(t)+xj(t+δ)aitjh(t)xj(t)bitjh(t)+xj(t)|+j=1mβitjh(t)|xit(tτitjh(t)+δ)eγitjh(t)xit(tτitjh(t)+δ)xit(tτitjh(t))eγitjh(t)xit(tτitjh(t))|+|Ait(δ,t)|[aitith(t)xit(t+δ)bitith(t)+xt(t+δ)aitith(t)xit(t)bitith(t)+xit(t)]}=λeλt|uit(t)|+eλt{[aitith(t)xit(t+δ)bitith(t)+xt(t+δ)aitith(t)xit(t)bitith(t)+xit(t)]×sgn(xit(t+δ)xit(t))+j=1,jitn|aitjh(t)xj(t+δ)bitjh(t)+xj(t+δ)aitjh(t)xj(t)bitjh(t)+xj(t)|+j=1mβitjh(t)γitjh(t)×|γitjh(t)xit(tτitjh(t)+δ)eγitjh(t)xit(tτitjh(t)+δ)γitjh(t)xit(tτitjh(t))eγitjh(t)xit(tτitjh(t))|+|Ait(δ,t)|[aitith(t)xit(t+δ)bitith(t)+xt(t+δ)aitith(t)xit(t)bitith(t)+xit(t)]}λeλt|uit(t)|+eλt{aitith(t)bitith(t)(bitith(t)+M)2|uit(t)|+j=1,jitnaitjh(t)bitjh(t)(bitjh(t)+κ)2|uj(t)|+j=1mβitjh(t)1e2|uit(tτitjh(t))|+|Ait(δ,t)|}=[aitith(t)bitith(t)(bitith(t)+M)2λ]|Uit(t)|+j=1,jitnaitjh(t)bitjh(t)(bitjh(t)+κ)2|Uj(t)|+j=1mβitjh(t)1e2eλτitjh(t)|Uit(tτitjh(t))|+eλt|Ait(δ,t)|for all tΛ0.(41) Let E(t)=sup<st{eλsu(s)}. It is easy to see that eλtu(t)E(t), and E(t) is non-decreasing. Now, the remaining proof will be divided into two steps.

Step one. If E(t)>eλtu(t) \ for \ all \ tΛ0, we assert that (42) E(t)U(Λ0)for all tΛ0.(42) In the contrary case, one can pick Λ1>Λ0 such that E(Λ1)>E(Λ0). Since eλtu(t)E(Λ0)for all tΛ0, there exists β(Λ0,Λ1) such that eλβu(β)=E(Λ1)E(β), which contradicts the fact that E(β)>eλβu(β) and it proves the above assertion. Then, we can select Λ2>Λ0 satisfying (43) u(t)eλtE(t)=eλtE(Λ0)<ε2for all tΛ2.(43)

Step two. If there exists ςΛ0 such that E(ς)=eλςu(ς), just from (Equation41) and the definition of E(t), we obtain (44) 0D(|Uis(s)|)|s=ς[aiςiςh(t)biςiςh(ς)(biςiςh(ς)+M)2λ]|Uiς(ς)|+j=1,jiςnaiςjh(ς)biςjh(ς)(biςjh(ς)+κ)2|Uj(ς)|+j=1mβiςjh(ς)1e2eλτiςjh(ς)|Uiς(ςτiςjh(ς))|+eλς|Aiς(δ,ς)|{[aiςiςh(t)biςiςh(ς)(biςiςh(ς)+M)2λ]+j=1,jiςnaiςjh(ς)biςjh(ς)(biςjh(ς)+κ)2+j=1mβiςjh(ς)1e2eλτiςjh(ς)}E(ς)+12ηεeλς<ηE(ς)+12ηεeλς,(44) which leads to (45) eλςu(ς)=E(ς)<ε2eλς,Mu(ς)<ε2.(45) For any t>ς with E(t)=eλtu(t), by the same method as that in the derivation of (Equation45), we can show (46) eλtu(t)<ε2eλt,andu(t)<ε2.(46) Furthermore, if E(t)>eλtu(t) and t>ς, one can pick Λ3[ς,t) such that E(Λ3)=eλΛ3|u(Λ3)andE(s)>eλsu(s) \ for all \ s(Λ3,t], which, together with (Equation45) and (Equation46), suggests that (47) u(Λ3)<ε2.(47) With a similar reasoning as that in the proof of Step one, one can entail that E(s)E(Λ3) \ is \ a \ constant \ for \ all \ s(Λ3,t], which, together with (Equation17), follows that u(t)<eλtE(t)=eλtE(Λ3)=u(Λ3)eλ(tΛ3)<ε2. Finally, the above discussion infers that there exists Λ^>max{ς,Λ0,Λ2} obeying that u(t)ε2<εfor all t>Λ^, which finishes the proof.

3. Main results

In this section, we will use the method of Lyapunov function and analytical techniques to present our main results on the existence and global attractivity of the positive asymptotically almost periodic solutions.

Theorem 3.1

If there is a positive constant M>κ such that the conditions (Equation8), (Equation9), (Equation10), (Equation11) and (Equation16) hold, then, system (Equation14) has a unique positive almost periodic solution x(t); furthermore, every solution of (Equation2) with respect to the IVC (Equation15) is asymptotically almost periodic and converges to x(t) as t+.

Proof.

Let ϕ be an initial function of (Equation15), and denote the solution of (Equation14) with respect to ϕ by v(t), vi(t)vi(t0σi),for all t(,t0σi],iQ.

For all tR,iQ, we can define (48) Bi(q,t)=[aiih(t+tq)vi(t+tq)biih(t+tq)+vi(t+tq)aiih(t)vi(t+tq)biih(t+tq)+vi(t+tq)][aiih(t)vi(t+tq)biih(t+tq)+vi(t+tq)aiih(t)vi(t+tq)biih(t)+vi(t+tq)]+j=1,jin[aijh(t+tq)vj(t+tq)bijh(t+tq)+vj(t+tq)aijh(t)vj(t+tq)bijh(t+tq)+vj(t+tq)]+j=1,jin[aijh(t)vj(t+tq)bijh(t+tq)+vj(t+tq)aijh(t)vj(t+tq)bijh(t)+vj(t+tq)]+j=1m[βijh(t+tq)βijh(t)]vi(t+tqτijh(t+tq))×eγijh(t+tq)vi(t+tqτijh(t+tq))+j=1mβijh(t)[vi(t+tqτijh(t+tq))×eγijh(t+tq)vi(t+tqτijh(t+tq))vi(tτijh(t)+tq)eγijh(t+tq)vi(tτijh(t)+tq)]+j=1mβijh(t)[vi(tτijh(t)+tq)eγijh(t+tq)vi(tτijh(t)+tq)vi(tτijh(t)+tq)eγijh(t)vi(tτijh(t)+tq)],(48) where {tq}q1R is a sequence. Then (49) vi(t+tq)=aiih(t)vi(t+tq)biih(t)+vi(t+tq)+j=1,jinaijh(t)vj(t+tq)bijh(t)+vj(t+tq)+j=1mβijh(t)vi(tτijh(t)+tq)eγijh(t)vi(tτijh(t)+tq)+Bi(q,t),(49) for all t+tqt0,iQ. By using a similar proof as in Lemma 2.3, one can pick {tq}q1 such that (50) |Bi(q,t)|<1qfor all i,q,t.(50) Employing Arzala–Ascoli Lemma, together with the fact that the function sequence {v(t+tq)}q1 is uniformly bounded and equiuniformly continuous, one can choose a subsequence {tqj}j1 of {tq}q1, such that {v(t+tqj)}j1 (for the sake of convenience we shall still use {v(t+tq)}q1) uniformly converges to x(t)=(x1(t),x2(t),,xn(t)) on any compact set of R. Let ‘’ be ‘uniformly converge’. Then, from Lemma 2.1, for all tR,iQ, we have (51) κ<miniQlim inft+vi(t)xi(t)maxiQlim supt+vi(t)<M,(51) and (52) aiih(t)vi(t+tq)biih(t)+vi(t+tq)aiih(t)xi(t)biih(t)+xi(t),asq+,j=1,jinaijh(t)vj(t+tq)bijh(t)+vj(t+tq)j=1,jinaijh(t)xj(t)bijh(t)+xj(t),asq+,j=1mβijh(t)vi(tτijh(t)+tq)eγijh(t)vi(tτijh(t)+tq)j=1mβijh(t)xi(tτijh(t))eγijh(t)x(tτijh(t)),asq+,(52) on any compact set of R. Thus, for iQ, combing with (Equation49), (Equation50) and (Equation52), on any compact set of R, it is easy to prove that {vi(t+tq)}q1 uniformly converges to aiih(t)xi(t)biih(t)+xi(t)+j=1,jinaijh(t)xj(t)bijh(t)+xj(t)+j=1mβijh(t)xi(tτijh(t))eγijh(t)x(tτijh(t)). Making full use of the uniform convergence function sequence properties, it is obvious that x(t) is a solution of (Equation14) and for all tR,iQ, (53) (xi(t))=aiih(t)xi(t)biih(t)+xi(t)+j=1,jinaijh(t)xj(t)bijh(t)+xj(t)+j=1mβijh(t)xi(tτijh(t))eγijh(t)x(tτijh(t)).(53)

According to the conclusion of Lemma 2.3, ϵ>0, one can select relatively dense subset Pϵ with the following properties: δPϵ, there is T=T(δ)>0 satisfying v(s+tq+δ)v(s+tq)<ϵ2,for all s+tq>T, and limq+v(s+tq+δ)v(s+tq)=x(s+δ)x(s)ϵ2<ϵfor all sR, that is to say, x(t) is a positive almost periodic solution of (Equation14).

Now, we reach the point to show that all solutions of (Equation2) converge to x(t). Let x(t) be any solution of (Equation2) corresponding to the initial function ϕ satisfying (Equation15), y(t)=x(t)x(t), and add the definition of xi(t) with xi(t)xi(t0σi) for all t(,t0σi]. Moreover, define Fi(t)=[(aiih(t)+aiig(t))xi(t)(biih(t)+biig(t))+xi(t)aiih(t)xi(t)biih(t)+xi(t)]+j=1,jin[(aijh(t)+aijg(t))xj(t)(bijh(t)+bijg(t))+xj(t)aijh(t)xj(t)bijh(t)+xj(t)]+j=1m[(βijh(t)+βijg(t))xi(t(τijh(t)+τijg(t)))×e(γijh(t)+γijg(t))xi(t(τijh(t)+τijg(t)))βijh(t)xi(tτijh(t))eγijh(t)xi(tτijh(t))]. Then (54) yi(t)=[aiih(t)xi(t)biih(t)+xi(t)aiih(t)xi(t)biih(t)+xi(t)]+j=1,jin[aijh(t)xj(t)bijh(t)+xj(t)aijh(t)xj(t)bijh(t)+xj(t)]+j=1mβijh(t)[xi(tτijh(t))eγijh(t)xi(tτijh(t))xi(tτijh(t))eγijh(t)xi(tτijh(t))]+Fi(t),for alltt0,iQ.(54) For any ϵ>0, combing the global existence and uniform continuity of x(t) with the fact that aijg,bijg,βijg,γijg,τijgW0(R+,R+), one can select a constant Tφ>max{T1,tφ} such that the following inequality holds: (55) |Fi(t)|<ηϵ2,for allt>Tφ.(55) Set G(t)=sup<st{eλsy(s)},for alltR, and let it be such an index that eλt|yit(t)|=||eλty(t)||. According to (Equation8), (Equation13), (Equation51) and Lemma 2.2, one can find Tφ,x>Tφ such that, for all t>Tφ,x,iQ, (56) κ<xi(t),xi(t),γijh(t)xi(tτijh(t)),γijh(t)xi(tτijh(t))κ~.(56) In view of (Equation38), (Equation39), (Equation40), (Equation54) and (Equation56), we have (57) D(eλs|yis(s)|)|s=t[aitith(t)bitith(t)(bitith(t)+M)2λ]eλt|yit(t)|+j=1,jitnaitjh(t)bitjh(t)(bitjh(t)+κ)2eλt|yj(t)|+j=1mβitjh(t)1e2eλτitjh(t)eλ(tτitjh(t))|yit(tτitjh(t))|+eλt|Fit(t)|for alltTφ,x,iQ.(57) Then, combing (Equation30), (Equation55) and (Equation57), taking the similar proof like that of Lemma 2.3, one can get the following conclusion: there is a constant T~Tφ,x such that y(t)<ϵ2for all tT~, which implies limt+x(t)=x(t),andx(t)AAP(R,Rn). By the uniqueness of the limit function, system (Equation14) has a unique positive almost periodic solution x(t). This completes the proof.

Remark 3.1

It is easy to check that all results corresponding to (Equation14) in [Citation20,Citation37] are special cases of this paper. Specifically, when n = 1, the assumption (Equation10) is weaker than inft[t0,+),s[0,κ]{a11(t)b11(t)+s+j=1mβ1j(t)γ1j(t)es}>0, which plays a fundamental role in the recent paper [Citation40]. In a word, our results are an extension and a useful supplement of papers [Citation20,Citation37,Citation40].

4. An example

In order to verify the advantage of the above theoretical results, an illustrative numerical simulation is performed in this section.

Example 4.1

Consider the below delay Nicholson's blowflies system: (58) x1(t)=0.6951934x1(t)0.7537127+x1(t)+0.01x2(t)0.23+x2(t)+(100+sin2t100+cos7t+101+|t|)x1(t(2esin4t+11+2|t|))×e(1+(100/(1+|t|)))x1(t(2esin4t+(1/(1+2|t|)))),x2(t)=0.6951225x2(t)0.7537101+x2(t)+0.02x1(t)0.82+x1(t)+(100+sin2t100+cos7t+101+|t|)x2(t(2esin4t+11+2|t|))×e(1+(100/(1+|t|)))x2(t(2esin4t+(1/(1+2|t|)))).(58) Note κ~1.342276,κ0.7215355. Let M = 1.31, and by some simple calculations, it is easy to verify that all the conditions of Theorem 3.1 are satisfied. Therefore, all solutions of system (Equation58) are asymptotically almost periodic function on R+, and converge to a same almost periodic function as t+. These conclusions are verified by the following numerical simulations in Figure .

Figure 1. Numerical solutions of (Equation58) for different initial values.

Figure 1. Numerical solutions of (Equation58(58) x1′(t)=−0.6951934x1(t)0.7537127+x1(t)+0.01x2(t)0.23+x2(t)+(100+sin⁡2t100+cos⁡7t+101+|t|)x1(t−(2esin4⁡t+11+2|t|))×e−(1+(100/(1+|t|)))x1(t−(2esin4⁡t+(1/(1+2|t|)))),x2′(t)=−0.6951225x2(t)0.7537101+x2(t)+0.02x1(t)0.82+x1(t)+(100+sin⁡2t100+cos⁡7t+101+|t|)x2(t−(2esin4⁡t+11+2|t|))×e−(1+(100/(1+|t|)))x2(t−(2esin4⁡t+(1/(1+2|t|)))).(58) ) for different initial values.

Remark 4.1

It is worth noting that system (Equation58) is not almost periodic, and the following inequalities: (59) suptRγij(t)M>30,suptR{aii(t)bii(t)(bii(t)+M)2+j=1,ji2aij(t)bij(t)(bij(t)+κ)2+1e2j=12βij(t)}>0.4,i=1,2,(59) do not meet the requirements of conditions (1.3) and (1.5) in [Citation20,Citation37].

To the best of our knowledge, few authors have considered the asymptotically almost periodic dynamics of Nicholson's blowflies model with both nonlinear density-dependent mortality term and patch structure. We only find [Citation3,Citation5,Citation12,Citation17–20,Citation32–35,Citation37,Citation38,Citation40] in the literature. However, all results in these papers can not be used to imply that all solutions of (Equation58) converge to the almost periodic solution.

5. Conclusions

In the present paper, the issue of asymptotic almost periodicity of Nicholson's blowflies systems with nonlinear density-dependent mortality term and patch structure is investigated. The positivity, global existence and boundedness of the initial value problem on the addressed system have been shown, and the existence of the positive asymptotically almost periodic solution and its global attractivity have been established by applying Lyapunov function and analytical techniques. In particular, a numerical example is provided to illustrate these analytical conclusions. It is worth noting that our conditions are very easy to test in practice by a simple algebraic method, and the method used in this paper provides a possible approach for studying the asymptotic almost periodic dynamics of other population systems with asymptotic almost-periodic environments.

Acknowledgments

The authors would like to express the sincere appreciation to the editor and reviewers for their helpful comments in improving the presentation and quality of the paper. This work was supported by the National Natural Science Foundation of China (Nos. 11971076, 51839002,11861037), Research Promotion Program of Changsha University of Science and Technology (No. 2019QJCZ050), and the Natural Scientific Research Fund of Zhejiang Province of China (Grant No. LY18A010019).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 11971076, 51839002,1186103], Research Promotion Program of Changsha University of Science and Technology [grant number 2019QJCZ050], and the Natural Scientific Research Fund of Zhejiang Province of China [grant number LY18A010019].

References

  • L. Berezansky and E. Braverman, Boundedness and persistence of delay differential equations with mixed nonlinearity, Appl. Math. Comput. 279 (2016), pp. 154–169.
  • L. Berezansky and E. Braverman, A note on stability of Mackey-Glass equations with two delays, J. Math. Anal. Appl. 450 (2017), pp. 1208–1228. doi: 10.1016/j.jmaa.2017.01.050
  • L. Berezansky, E. Braverman, and L. Idels, Nicholson's blowflies differential equations revisited: main results and open problems, Appl. Math. Model. 34 (2010), pp. 1405–1417. doi: 10.1016/j.apm.2009.08.027
  • Q. Cao, G. Wang, and C. Qian, New results on global exponential stability for a periodic Nicholson's blowflies model involving time-varying delays, Adv. Differ. Equ. 2020(43) (2020). Available at https://doi.org/10.1186/s13662-020-2495-4.
  • W. Chen, Permanence for Nicholson-type delay systems with patch structure and nonlinear density-dependent mortality terms, Electron. J. Qual. Theory Differ. Equ. 73 (2012), pp. 1–14.
  • A. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Vol. 377, Springer, Berlin, 1974.
  • W. Gurney, S. Blythe, and R. Nisbet, Nicholson's blowflies revisited, Nature 287 (1980), pp. 17–21. doi: 10.1038/287017a0
  • J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
  • L. Hien, Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson's blowflies model with delays, J. Biol. Dyn. 8(1) (2014), pp. 135–144. doi: 10.1080/17513758.2014.917725
  • C. Huang, X. Long, L. Huang, and S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Can. Math. Bull. 63(2) (2020), pp. 405–422. doi: 10.4153/S0008439519000511
  • C. Huang, Y. Qiao, L. Huang, and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differ. Equ. 2018 (2018), p. 3284. Available at https://doi.org/10.1186/s13662-018-1589-8.
  • C. Huang, J. Wang, and L. Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Differ. Equ. 2020(61) (2020), pp. 1104–17.
  • C. Huang, S. Wen, M. Li, F. Wen, and X. Yang, An empirical evaluation of the influential nodes for stock market network: Chinese A shares case, Finance Res. Lett. (2020). doi: 10.1016/j.frl.2020.101517.
  • C. Huang, X. Yang, and J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simul. 171 (2020), pp. 201–206. doi: 10.1016/j.matcom.2019.09.023
  • C. Huang, H Zhang, J Cao, and H Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Int. J. Bifurc. Chaos 29(7) (2019). 1950091. 23 pp. doi: 10.1142/S0218127419500913
  • C. Huang, H. Zhang, and L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal. 18(6) (2019), pp. 3337–3349. doi: 10.3934/cpaa.2019150
  • B. Liu, Permanence for a delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term, Ann. Polonici Math. 101(2) (2011), pp. 123–129. doi: 10.4064/ap101-2-2
  • B. Liu, Almost periodic solutions for a delayed Nicholsons blowflies model with a nonlinear density-dependent mortality term, Adv. Differ. Equ. 72 (2014), pp. 1–16.
  • B. Liu and S. Gong, Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms, Nonlinear Anal. Real World Appl. 12 (2011), pp. 1931–1937. doi: 10.1016/j.nonrwa.2010.12.009
  • P. Liu, L. Zhang, S. Liu, and L. Zheng, Global exponential stability of almost periodic solutions for Nicholson's Blowflies system with nonlinear density-dependent mortality terms and patch structure, Math. Model. Anal. 22(4) (2017), pp. 484–502. doi: 10.3846/13926292.2017.1329171
  • X. Long and S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett. 100 (2020), p. 106027. Available at https://doi.org/10.1016/j.aml.2019.106027.
  • Y. Muroya, Global stability for separable nonlinear delay differential equations, Comput. Math. Appl.49 (2005), pp. 1913–1927. doi: 10.1016/j.camwa.2004.02.013
  • C. Qian, New periodic stability for a class of Nicholson's blowflies models with multiple different delays, Int. J. Control (2020). doi: 10.1080/00207179.2020.1766118.
  • C. Qian and Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequalities Appl. 2020(13) (2020). Available at https://doi.org/10.1186/s13660-019-2275-4.
  • G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. Royal Soc. A 463 (2007), pp. 2655–2669. doi: 10.1098/rspa.2007.1890
  • B. Rothschild, Dynamics of marine fish populations, Q. Rev. Biol. 52(3) (1986), pp. 907–909.
  • B. Rothschild and J. Ault, Population-dynamic instability as a cause of patch structure, Ecol. Model.93 (1996), pp. 237–249. doi: 10.1016/S0304-3800(96)00005-1
  • S. Ruan, A. Ardito, P. Ricciardi, and D. Deangelis, Coexistence in competition models with density-dependent mortality (in French), Comptes Rendus Biologies 330 (2007), pp. 845–854. doi: 10.1016/j.crvi.2007.10.004
  • S. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's blowflies model, Math. Comput. Model. 35 (2002), pp. 719–731. doi: 10.1016/S0895-7177(02)00043-2
  • H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011.
  • J. So and J. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Differ. Equ. Dyn. Syst. 2 (1994), pp. 11–18.
  • D. Son, L. HienB, and T. Anh, Global attractivity of positive periodic solution of a delayed Nicholson model with nonlinear density-dependent mortality term, Electron. J. Qual. Theory Differ. Equ. 8 (2019), pp. 1–17. doi: 10.14232/ejqtde.2019.1.62
  • Y. Tang and S. Xie, Global attractivity of asymptotically almost periodic Nicholson's blowflies models with a nonlinear density-dependent mortality term, Int. J. Biomathematics 11(6) (2018), p. 1850079. 15 pp. doi: 10.1142/S1793524518500791
  • W. Wang, Positive periodic solutions of delayed Nicholson's blowflies models with a nonlinear density-dependent mortality term, Appl. Math. Model. 36 (2012), pp. 4708–4713. doi: 10.1016/j.apm.2011.12.001
  • W. Wang, Exponential extinction of Nicholson's blowflies system with nonlinear density-dependent mortality terms, Abstract Appl. Anal. 302065 (2012), pp. 1–17.
  • J. Wei and M. Li, Hopf bifurcation analysis in a delayed Nicholson blowflies equation, Nonlinear Anal.60 (2005), pp. 1351–1367. doi: 10.1016/j.na.2003.04.002
  • Y. Xu, Existence and global exponential stability of positive almost periodic solutions for a delayed Nicholson's blowflies model, J. Korean Math. Soc. 51(3) (2014), pp. 473–493. doi: 10.4134/JKMS.2014.51.3.473
  • Y. Xu, New stability theorem for periodic Nicholson's model with mortality term, Appl. Math. Lett.94 (2019), pp. 59–65. doi: 10.1016/j.aml.2019.02.021
  • Y. Xu, Q. Cao, and X. Guo, Stability on a patch structure Nicholson's blowflies systeminvolving distinctive delays, Appl. Math. Lett. 105 (2020), p. 106340. doi: 10.1016/j.aml.2020.106340.
  • L. Yao, Dynamics of Nicholson's blowflies models with a nonlinear density-dependent mortality, Appl. Math. Model. 64 (2018), pp. 185–195. doi: 10.1016/j.apm.2018.07.007
  • Z. Ye, C. Hu, L. He, G. Ouyang, and F. Wen, The dynamic time-frequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis, Energy J. 41(01) (2020). doi:10.5547/01956574.41.5.fwen.
  • T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, J. Differ. Equ. 245(11) (2008), pp. 3376–3388. doi: 10.1016/j.jde.2008.03.007
  • C. Zhang, Almost Periodic Type Functions and Ergodicity, Kluwer Academic/Science Press, Beijing, 2003.