9,928
Views
87
CrossRef citations to date
0
Altmetric
RESEARCH REVIEW

A review of the green syntheses and anti-microbial applications of gold nanoparticles

, , , &
Pages 216-227 | Received 21 Jan 2017, Accepted 27 Jun 2017, Published online: 21 Jul 2017

ABSTRACT

Nanotechnology has emerged as a promising multidisciplinary field. It has shown several applications including diagnostics, imaging and structural design. Nanoparticles can be synthesized via chemical and physical approaches, carrying many threats to the ecosystem. To overcome these threats, sustainable routes for the synthesis of nanoparticles were implemented. Green synthesis is the most fascinating and attractive alternative to chemical synthesis as it offers more advantages. Nontoxic and eco-friendly secondary metabolites from plants are used as reducing and capping agents. This process is comparatively simple and cost-effective. A gold salt is simply reduced by biomolecules (phenols, alkaloids, proteins, etc.) present in the extracts of these plants. In this review, we have emphasized the synthesis and antimicrobial potential of gold nanoparticles using various plant extracts and their proposed mechanisms.

Abbreviation: Au: aurum; gold; DLS: dynamic light scattering; EDAX: energydispersive X-ray analysis; EDS: energy-dispersive spectroscopy; FTIR: Fourier transform infrared spectroscopy; HRTEM: highresolution transmission electron microscopy; NPs: nanoparticles; UV–VIS: ultra violet-visible spectroscopy; SEM: scanning electron microscopy; XRD: X-ray Diffraction

GRAPHICAL ABSTRACT

Introduction

The word “nano” is used as a prefix for one billionth part, i.e. 10−9. Metallic nanoparticle sizes range from 1 to 100 nm (Citation1,Citation2). Due to their distinctive physical and chemical properties, metallic nanoparticles have been used in several fields, such as synthetic biology, health care, cellular transportations, food and optical devices (Citation3). Among nanoparticles, gold nanoparticles (Au NPs) have unique surface morphologies, stable nature and controlled geometry (Citation4). Most Au NPs are used in sensing, electronics, data packing, molecular switches and light-harvesting assemblies (Citation5–8). Au NPs are also used in detection, diagnosis and treatments of several diseases (Citation2,Citation9). Recently, different methods have been used to synthesize NPs such as physical (sonication, laser ablation and radiation), chemical (condensation, sol gel method and reduction) and biological methods (). The conventional approaches have many challenges and encouraged researchers to find alternative approaches (Citation9). The biological synthesis of nanoparticles is safe, dynamic and energy efficient (Citation10,Citation11). This method uses various biological resources ranging from prokaryotes to eukaryotes for in vivo production of NPs (Citation12). Metabolites (proteins, fatty acids, sugars, enzymes, phenolic, etc.) in these sources are strongly involved in both bio reduction of metallic ions to NPs and their stabilization () (Citation11). Furthermore, functional groups such as polyols and carboxylic acid have also been supposed to be responsible for the synthesis of NPs (Citation13,Citation14). The proposed mechanism of conversion is Au+3 into metallic Au0 NPs by these bio reductants is emphasized in (Citation15,Citation16). Until now, the chemically synthesized NPs have been used for these activities, but according to current reports, NPs synthesized via biological methods are more stable than others methods (Citation17). This review mainly focuses on the synthesis of Au NPs using diverse biotic resources such as plants and microbes, with an emphasis on their applications, particularly their antimicrobial activities.

Figure 1. Various methods for making nanoparticles.

Figure 1. Various methods for making nanoparticles.

Figure 2. Mechanistic approach for green synthesis of Gold nanoparticles (Au NPs).

Figure 2. Mechanistic approach for green synthesis of Gold nanoparticles (Au NPs).

Plant green synthesis

Nanoparticles are synthesized through many physiochemical processes which have posed numerous pressures on the environment. Plant-based synthesis of nanoparticles is a simple process, a metal salt is mixed with plant extract and the reaction completes in minutes to few hours at ordinary room temperature. The metallic salt solution is reduced into respective nanoparticles () (Citation18). This fashion of simplicity have got considerable attention during the last decade, especially gold nanoparticles (Au NPs), which are safer compared to other metallic NPs (Citation19). Furthermore, their synthesis is quick, cost-effective, eco-friendly and can be scaled up easily.

Figure 3. Green synthesis of nanoparticles from bulk metal solution.

Figure 3. Green synthesis of nanoparticles from bulk metal solution.

Au NPs from leaf decoction of Indian borage (Coleus amboinicus) was reported by Narayanan and Sakthivel (Citation20). FTIR results confirmed the existence of aromatic amines, amide groups and secondary alcohols that were claimed to be responsible for the stabilization and reduction of NPs. Elephant apple (Dillenia indica) fruit extract has been used to synthesize Au NPs of various morphologies. Phenolic compounds in the fruit extract were found accountable for the reduction of the Au+3 to Au NPs (Citation21). Triangular-shaped Au NPs were synthesized using tuber extract of Dioscorea bulbifera, commonly known as “air potato.” Complete reduction occurred after 5 h, leading to synthesis of NPs (Citation22). Au NPs synthesized from leaf extract of medicinally important herb Euphorbia hirta had shown good antimicrobial potential (Citation23). Butea monosperman, also known as “flame of forest”, leaf extract derived Au NPs conjugated with doxorubicin showed excellent anticancer potential (Citation24). Leaf extract of coriander (Coriandrum sativum) was used to synthesize Au NPs, and depicted diversity in shapes and sizes (7–58 nm) (Citation25). Au NPs synthesized from Terminalia arjuna leaf extract improved cell division and pollen development in Allium cepa and Gloriosa superba (Citation26). Au NPs synthesized from ginger (Zingiber officinale), had been used as carrier for drug and gene transport (Citation27). Au NPs synthesized using mint (Mentha piperita) leaf extract were documented to have antimicrobial activity against gram-positive and gram-negative strains (Citation28). Au NPs made from Maytenus royleanus indicated antileshmanial activity (Citation29). Stable Au NPs using leaf extract of banana (Musa paradisiaca) have been reported. The extract contained carboxyl, amine and hydroxyl groups were ascribed to reduce Au+3 to Au NPs. The peel extract mediated AuNPs synthesis displayed efficient anti-fungal activity (Citation30).

Gold nanoparticles were synthesized from medicinal shrub Memecylon edule leaves (10–45 nm). Saponins in the extracts were credited for higher yield of AuNPs (Citation31). Garcinia mangostana, commonly known as mangosteen, fruit extract has been used to make Au NPs. The phenols, flavonoids, benzophenones and anthocyanins were used as reducing agents (Citation32). Au NPs were synthesized using Citrus reticulata, Citrus aurantium, Citrus sinensis and Citrus grandi fruit extracts possessed considerable antimicrobial activity (Citation33). Highly stable crystalline Au NPs were observed at pH 10, 100°C and 100 ppm aurochlorate, from Momordica charantia (Citation34). Several other plants extract from different parts have been used for the synthesis of Au NPs as shown in .

Table 1. Green synthesis of gold nanoparticles from different plants extracts.

Applications of gold nanoparticles

In recent years, a dramatic surge has occurred in the field of nanotechnology, its applications ranging from medicine to engineering (Citation101). The biocompatible nature of Au NPs makes them suitable for medical applications. Au NP conjugates are mostly used in the treatment of cancer, arthritis and antimicrobial therapies. When cancer cells are treated with green synthesized Au NPs under electromagnetic radiations, thermal degradation of malignant cells occurs (Citation102,Citation103). Their ability of scattering light in the visible light region suggests that these NPs can be used as an alternative contrast mediator in microscopy. Under dark field light scattering, Au NPs can be used to detect metabolites, tumors, endocytosis and receptors in cells (Citation104). Some Au NP-based diagnostic kits are under clinical trials (Citation105). Green synthesized Au NPs have also been used in the development of biosensors, quantification of blood glucose, disease markers, toxic metals and insecticides (Citation104,Citation106,Citation107). Au NPs also have the potential to degrade and detoxify toxic pollutants (Citation108,Citation109). Some other applications have been shown in .

Figure 4. Various applications of Au NPs.

Figure 4. Various applications of Au NPs.

Antimicrobial activity of gold nanoparticles

Gold has been used for several centuries in the treatment of various disorders. Robert Koch first explored the biocidal potential of gold (Citation110). Apart from their other applications, the antimicrobial activity of Au NPs has been mostly exploited (Citation89). Nanoparticles mostly impede the electrostatic flux across membranes, resulting in distorted membranes (Citation111,Citation112). Moreover, nanoparticles also enhance the expression of genes helping in redox processes and thus leading to fungal and bacterial death (Citation113). This antimicrobial potential is attributed to the distinctive surface chemistry, smaller size, polyvalent and photothermic nature (Citation114–116). But the exact mechanism is poorly understood (Citation117). Au NPs primarily react with sulfur or phosphorus-holding bases, which are the most preferred spots for Au NPs attack. When NPs attach to thiol functional groups of enzymes (nicotinamide adenine dinucleotide (NADH) dehydrogenases), they interrupt the respiratory chains by generation of high amount of free radicles, leading to cell death (Citation118). Another proposed hypothesis for cellular death is that these NPs decrease the ATPase activities; GNP may also inhibit the binding of tRNA to ribosomal subunit (Citation118). While killing Leishmania, an elevated number of electrons are produced by Au NPs which yield ROS (O−2 and OH). These radicals destroy DNA and other cellular components of the pathogen (Citation29). Another possible mechanism is that these Au NPs hamper the transmembrane H+ efflux (Citation119). The smaller size could also be attributed to antimicrobial potential, almost 250 times lesser than that of bacterial cell, which makes them easier to adhere with the cell wall and impede the cellular process leading to cellular death (Citation89). Herdt et al. stated that gold surface can degrade DNA after interaction with their surface (Citation120).

Antimicrobial potential of the NPs are affected by the size and surface chemistry (Citation121). Increase in size will decrease their activity and vice versa (Citation122). Which is also supported by study of Ahmad et al (Citation119), according to their study 7 nm Au NPs restrict the trans membrane H+ efflux of the Candida species more than the 15 nm Au NPs. Moreover, despite the size the antimicrobial activity was also different in case of cell wall composition. Au NPs showed highest activity against gram-negative bacteria than gram-positive bacteria. The cell wall of the gram-positive bacteria contains a thick layer of peptidoglycan, consisting of linear polysaccharide chains cross-linked by short peptides, thus forming a more rigid structure leading to difficult penetration of the Au NPs compared to the gram-negative bacteria where the cell wall possesses thinner layer of peptidoglycan (Citation81,Citation123). Other than the size of NPs and cell wall structure of bacteria, surface modification (coating or capping agents) concentration and purification methods also affect the antibacterial activity (Citation124). Au NPs coated with cotton material exhibited better antibacterial activity (Citation36). The efficacy of the antibacterial activity of Au NPs can also be increased by coating with antibiotics (Citation125). The coating of aminoglycoside antibiotics with Au NPs has an antibacterial effect on a range of gram-positive and gram-negative bacteria (Citation4). The synthesized Au NPs have shown enhanced antibacterial activity (Citation35). It is very interesting that all these green synthesized Au NPs show efficient antibacterial activity against certain bacterial strains, especially compared to chemically synthesized Au NPs which showed nearly no antimicrobial activity against similar strains (Citation126). The antibacterial activity may be due to the synergistic effect of the combination of Au NPs and extracts (Citation124). Au NPs are synthesized using diverse plant extracts have been used for investigating their antimicrobial activities against different microbes ().

Table 2. Antimicrobial activities of gold nanoparticles synthesized using plant extracts.

Conclusion and future prospects

Gold nanoparticles have multiple applications in various fields of science such as electronics, disease diagnostics and treatment, imagining, probes, catalytic, remediation and cellular transportation. Au NPs are being synthesized through different physicochemical methods. But, biogenic reduction of the gold salt to synthesize Au NPs is an inexpensive, eco-friendly and safe process. No toxic chemicals or contaminants are produced in this process. Moreover, Au NPs of controlled size and morphology are also synthesized in huge amounts. Their stability and reduction potential are attributed to bioactive molecules present in these biological resources. Among these bio reductants, plant extracts are more beneficial than other biological resources. Therefore, in this prospect, using plant sources for Au NPs synthesis can open new horizons in future. But, a detailed study is needed to explore the exact mechanism and metabolites involved in the reduction process. Once explored, it will revolutionize the synthesis of Au NPs on both laboratory and commercial scale.

Acknowledgements

The authors are thankful to all the PCCL team of department of biotechnology, Quaid I Azam University Islamabad for their support and courage.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Muhammad Nadeem is an Mphil research Scholar at Quiad i Azam University Islamabad Pakistan, working under the supervision of Dr. Bilal Haider Abbasi. His current research is focused on the green synthesis of nanoparticles and its antimicrobial applictions.

Bilal Haider Abbasi is a senior scientist. His area of research includes Bioprocess technology, Medicinal Plants Biotechnology and green synthesis of Nanoparticles.

Muhammad Younas is an Mphil research Scholar at Quiad i Azam University Islamabad Pakistan. His current research is focussed on the green mediated nanoparticles and plant tissue culture.

Waqar Ahmad is an Mphil research Scholar at Quiad i Azam University Islamabad Pakistan. His current research is focussed on the green synthesis of nanoparticles and its applications.

Taimoor Khan is an Mphil research Scholar at Quiad i Azam University Islamabad Pakistan. Presently he is working on green synthesis of nanoparticles and its antimicrobial applications.

References

  • Alanazi, F.K.; Radwan, A.A.; Alsarra, I.A. Biopharmaceutical Applications of Nanogold. Saudi Pharm. J. 2010, 18 (4), 179–193. doi: 10.1016/j.jsps.2010.07.002
  • Khan, A.; Rashid, R.; Murtaza, G.; Zahra, A. Gold Nanoparticles: Synthesis and Applications in Drug Delivery. Trop. J. Pharm. Res. 2014, 13 (7), 1169–1177. doi: 10.4314/tjpr.v13i7.23
  • Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10 (3), 507–517. doi: 10.1007/s11051-007-9275-x
  • Grace, A.N.; Pandian, K. Antibacterial Efficacy of Aminoglycosidic Antibiotics Protected Gold Nanoparticles – A Brief Study. Colloids Surf. A 2007, 297 (1), 63–70. doi: 10.1016/j.colsurfa.2006.10.024
  • Drechsler, U.; Erdogan, B.; Rotello, V.M. Nanoparticles: Scaffolds for Molecular Recognition. Chem. Eur. J. 2004, 10 (22), 5570–5579. doi: 10.1002/chem.200306076
  • Lee, J.-S. Recent Progress in Gold Nanoparticle-based Non-Volatile Memory Devices. Gold Bull. 2010, 43 (3), 189–199. doi: 10.1007/BF03214986
  • van der Molen, S.J.; Liao, J.; Kudernac, T.; Agustsson, J.S.; Bernard, L.; Calame, M.; van Wees, B.J.; Feringa, B.L.; Schönenberger, C. Light-Controlled Conductance Switching of Ordered Metal−Molecule−Metal Devices. Nano Lett. 2009, 9 (1), 76–80. doi: 10.1021/nl802487j
  • Mackowski, S. Hybrid Nanostructures for Efficient Light Harvesting. J. Phys. Condens. Matter 2010, 22 (19). doi:10.1088/0953-8984/22/19/193102.
  • Alvarez, R.A.; Cortez-Valadez, M.; Bueno, L.O.N.; Hurtado, R.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.; Serrano-Corrales, L.I.; Arizpe-Chávez, H.; Flores-Acosta, M. Vibrational Properties of Gold Nanoparticles Obtained by Green Synthesis. Phys. E. 2016, 84, 191–195. doi: 10.1016/j.physe.2016.04.024
  • Sathishkumar, M.; Sneha, K.; Won, S.; Cho, C.-W.; Kim, S.; Yun, Y.-S. Cinnamon zeylanicum Bark Extract and Powder Mediated Green Synthesis of Nano-crystalline Silver Particles and Its Bactericidal Activity. Colloids Surf. B 2009, 73 (2), 332–338. doi: 10.1016/j.colsurfb.2009.06.005
  • Hurtado, R.B.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.; Larios-Rodriguez, E.; Alvarez, R.A.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.; Arizpe-Chávez, H.; Hernández-Martínez, A. Instant Synthesis of Gold Nanoparticles at Room Temperature and SERS Applications. Phys. Lett. A 2016, 380 (34), 2658–2663. doi: 10.1016/j.physleta.2016.05.052
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13 (10), 2638–2650. doi: 10.1039/c1gc15386b
  • Sheny, D.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au–Ag Bimetallic Nanoparticles Using Aqueous Extract and Dried Leaf of Anacardium occidentale. Spectrochim. Acta Part A 2011, 79 (1), 254–262. doi: 10.1016/j.saa.2011.02.051
  • Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology 2007, 18 (10). doi:10.1088/0957-4484/18/10/105104.
  • Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6 (2), 257–262. doi: 10.1016/j.nano.2009.07.002
  • Aswathy Aromal, S.; Philip, D. Green Synthesis of Gold Nanoparticles using Trigonella foenum-graecum and Its Size-dependent Catalytic Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 97, 1–5. doi: 10.1016/j.saa.2012.05.083
  • Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic Synthesis of Nanoparticles: A Review. Arabian J. Chem. 2015. doi:10.1016/j.arabjc.2015.11.002.
  • Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31 (2), 346–356. doi: 10.1016/j.biotechadv.2013.01.003
  • Rai, M.; Yadav, A.; Gade, A. Current [Corrected] Trends in Phytosynthesis of Metal Nanoparticles. Crit. Rev. Biotechnol. 2008, 28 (4), 277–284. doi: 10.1080/07388550802368903
  • Narayanan, K.B.; Sakthivel, N. Phytosynthesis of Gold Nanoparticles Using Leaf Extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61 (11), 1232–1238. doi: 10.1016/j.matchar.2010.08.003
  • Sett, A.; Gadewar, M.; Sharma, P.; Deka, M.; Bora, U. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Dillenia indica. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7 (2). doi:10.1088/2043-6262/7/2/025005.
  • Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Jabgunde, A.; Kale, S.; Pardesi, K.; Bellare, J.; Dhavale, D.D.; Chopade, B.A. Synthesis of Gold Nanoanisotrops Using Dioscorea bulbifera Tuber Extract. J. Nanomater. 2011, 2011, 1–8. doi: 10.1155/2011/354793
  • Annamalai, A.; Christina, V.; Sudha, D.; Kalpana, M.; Lakshmi, P. Green Synthesis, Characterization and Antimicrobial Activity of Au NPs Using Euphorbia hirta L. Leaf Extract. Colloids Surf. B 2013, 108, 60–65. doi: 10.1016/j.colsurfb.2013.02.012
  • Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green Synthesis, Characterization of Gold and Silver Nanoparticles and Their Potential Application for Cancer Therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 53, 298–309. doi: 10.1016/j.msec.2015.04.048
  • Narayanan, K.B.; Sakthivel, N. Coriander Leaf Mediated Biosynthesis of Gold Nanoparticles. Mater. Lett. 2008, 62 (30), 4588–4590. doi: 10.1016/j.matlet.2008.08.044
  • Gopinath, K.; Venkatesh, K.; Ilangovan, R.; Sankaranarayanan, K.; Arumugam, A. Green Synthesis of Gold Nanoparticles From Leaf Extract of Terminalia arjuna, for the Enhanced Mitotic Cell Division and Pollen Germination Activity. Ind. Crops Prod. 2013, 50, 737–742. doi: 10.1016/j.indcrop.2013.08.060
  • Kumar, K.P.; Paul, W.; Sharma, C.P. Green Synthesis of Gold Nanoparticles with Zingiber officinale Extract: Characterization and Blood Compatibility. Process Biochem. 2011, 46 (10), 2007–2013. doi: 10.1016/j.procbio.2011.07.011
  • MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity Against Clinically Isolated Pathogens. Colloids Surf. B 2011, 85 (2), 360–365. doi: 10.1016/j.colsurfb.2011.03.009
  • Ahmad, A.; Syed, F.; Imran, M.; Khan, A.U.; Tahir, K.; Khan, Z.U.H.; Yuan, Q. Phytosynthesis and Antileishmanial Activity of Gold Nanoparticles by Maytenus royleanus. J. Food Biochem. 2015, 40 (4), 420–427. doi: 10.1111/jfbc.12232
  • Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gopi, N.; Ekambaram, P.; Pachaiappan, R.; Velusamy, P.; Murugan, K.; Benelli, G.; Suresh Kumar, R.; Suriyanarayanamoorthy M. Therapeutic Effects of Gold Nanoparticles Synthesized Using Musa paradisiaca Peel Extract Against Multiple Antibiotic Resistant Enterococcus faecalis Biofilms and Human Lung Cancer Cells (A549). Microb. Pathog. 2017, 102, 173–183. doi: 10.1016/j.micpath.2016.11.029
  • Elavazhagan, T.; Arunachalam, K.D. Memecylon edule Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles. Int. J. Nanomed. 2011, 6, 1265–1278. doi: 10.2147/IJN.S18347
  • Xin Lee, K.; Shameli, K.; Miyake, M.; Kuwano, N.; Bt Ahmad Khairudin, N.B.; Bt Mohamad, S.E.; Yew, Y.P. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. J. Nanomat. 2016, 2016, 1–7. doi: 10.1155/2016/8489094
  • Islam, N.U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix alba. Arabian J. Chem. 2015. doi:10.1016/j.arabjc.2015.06.025.
  • Pandey, S.; Oza, G.; Mewada, A.; Sharon, M. Green Synthesis of Highly Stable Gold Nanoparticles Using Momordica charantia as Nano Fabricator. Arch. Appl. Sci. Res. 2012, 4 (2), 1135–1141.
  • Rajan, A.; Vilas, V.; Philip, D. Studies on Catalytic, Antioxidant, Antibacterial and Anticancer Activities of Biogenic Gold Nanoparticles. J. Mol. Liq. 2015, 212, 331–339. doi: 10.1016/j.molliq.2015.09.013
  • Ganesan, R.; Prabu, H.G. Synthesis of Gold Nanoparticles Using Herbal Acorus calamus Rhizome Extract and Coating on Cotton Fabric for Antibacterial and UV Blocking Applications. Arabian J. Chem. 2015. doi:10.1016/j.arabjc.2014.12.017.
  • Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22 (2), 577–583. doi: 10.1021/bp0501423
  • Sheny, D.; Mathew, J.; Philip, D. Synthesis Characterization and Catalytic Action of Hexagonal Gold Nanoparticles Using Essential Oils Extracted from Anacardium occidentale. Spectrochim. Acta Part A 2012, 97, 306–310. doi: 10.1016/j.saa.2012.06.009
  • Bindhu, M.; Umadevi, M. Antibacterial Activities of Green Synthesized Gold Nanoparticles. Mater. Lett. 2014, 120, 122–125. doi: 10.1016/j.matlet.2014.01.108
  • Venkatachalam, M.; Govindaraju, K.; Sadiq, A.M.; Tamilselvan, S.; Kumar, V.G.; Singaravelu, G. Functionalization of Gold Nanoparticles as Antidiabetic Nanomaterial. Spectrochim. Acta Part A 2013, 116, 331–338. doi: 10.1016/j.saa.2013.07.038
  • Mukundan, D.; Mohankumar, R.; Vasanthakumari, R. Green synthesis of Gold Nano Particles Using Leaves Extract of Bauhinia tomentosa Linn and In-Vitro Anticancer Activity. Int. J. Innovative Res. Sci. Eng. 2005.
  • Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid Synthesis of Au, Ag, and Bimetallic Au Core–Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Colloid Interface Sci. 2004, 275 (2), 496–502. doi: 10.1016/j.jcis.2004.03.003
  • Babu, P.J.; Sharma, P.; Saranya, S.; Bora, U. Synthesis of Gold Nanoparticles Using Ethonolic Leaf Extract of Bacopa monnieri and UV Irradiation. Mater. Lett. 2013, 93, 431–434. doi: 10.1016/j.matlet.2012.11.034
  • Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green Synthesis of Gold Nanoparticles and Their Anticancer Activity. Cancer Nanotechnol. 2013, 4 (4), 91–98. doi: 10.1007/s12645-013-0040-9
  • Vilchis-Nestor, A.R.; Sánchez-Mendieta, V.; Camacho-López, M.A.; Gómez-Espinosa, R.M.; Camacho-López, M.A.; Arenas-Alatorre, J.A. Solventless Synthesis and Optical Properties of Au and Ag Nanoparticles Using Camellia sinensis Extract. Mater. Lett. 2008, 62 (17), 3103–3105. doi: 10.1016/j.matlet.2008.01.138
  • Kumar, V.G.; Gokavarapu, S.D.; Rajeswari, A.; Dhas, T.S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I.; Roy, A.; Sinha, S. Facile Green Synthesis of Gold Nanoparticles Using Leaf Extract of Antidiabetic Potent Cassia auriculata. Colloids Surf. B 2011, 87 (1), 159–163. doi: 10.1016/j.colsurfb.2011.05.016
  • Dwivedi, A.D.; Gopal, K. Biosynthesis of Silver and Gold Nanoparticles Using Chenopodium album Leaf Extract. Colloids Surf. A 2010, 369 (1), 27–33. doi: 10.1016/j.colsurfa.2010.07.020
  • Naraginti, S.; Sivakumar, A. Eco-friendly Synthesis of Silver and Gold Nanoparticles with Enhanced Bactericidal Activity and Study of Silver Catalyzed Reduction of 4-Nitrophenol. Spectrochim. Acta Part A 2014, 128, 357–362. doi: 10.1016/j.saa.2014.02.083
  • Sreekanth, T.; Nagajyothi, P.; Supraja, N.; Prasad, T. Evaluation of the Antimicrobial Activity and Cytotoxicity of Phytogenic Gold Nanoparticles. Appl. Nanosci. 2015, 5 (5), 595–602. doi: 10.1007/s13204-014-0354-x
  • Dorosti, N.; Jamshidi, F. Plant-mediated Gold Nanoparticles by Dracocephalum kotschyi as Anticholinesterase Agent: Synthesis, Characterization, and Evaluation of Anticancer and Antibacterial Activity. J. Appl. Biomed. 2016, 14 (3), 235–245. doi: 10.1016/j.jab.2016.03.001
  • Pattanayak, M.; Nayak, P. Green Synthesis of Gold Nanoparticles Using Elettaria cardamomum (ELAICHI) Aqueous Extract. World J. Nano Sci. Technol. 2013, 2 (1), 01–05.
  • Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. Biosynthesis of Gold and Silver Nanoparticles Using Emblica officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. J. Nanosci. Nanotechnol. 2005, 5 (10), 1665–1671. doi: 10.1166/jnn.2005.184
  • Guo, M.; Li, W.; Yang, F.; Liu, H. Controllable Biosynthesis of Gold Nanoparticles from a Eucommia ulmoides Bark Aqueous Extract. Spectrochim. Acta Part A 2015, 142, 73–79. doi: 10.1016/j.saa.2015.01.109
  • Raghunandan, D.; Basavaraja, S.; Mahesh, B.; Balaji, S.; Manjunath, S.; Venkataraman, A. Biosynthesis of Stable Polyshaped Gold Nanoparticles from Microwave-exposed Aqueous Extracellular Anti-malignant Guava (Psidium guajava) Leaf Extract. Nanobiotechnology 2009, 5 (1–4), 34–41. doi: 10.1007/s12030-009-9030-8
  • Tamuly, C.; Hazarika, M.; Bordoloi, M. Biosynthesis of Au Nanoparticles by Gymnocladus assamicus and Its Catalytic Activity. Mater. Lett. 2013, 108, 276–279. doi: 10.1016/j.matlet.2013.07.020
  • Philip, D. Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus rosa sinensis. Phys. E 2010, 42 (5), 1417–1424. doi: 10.1016/j.physe.2009.11.081
  • Bindhu, M.; Rekha, P.V.; Umamaheswari, T.; Umadevi, M. Antibacterial Activities of Hibiscus cannabinus Stem-assisted Silver and Gold Nanoparticles. Mater. Lett. 2014, 131, 194–197. doi: 10.1016/j.matlet.2014.05.172
  • Basavegowda, N.; Idhayadhulla, A.; Lee, Y.R. Phyto-synthesis of Gold Nanoparticles Using Fruit Extract of Hovenia dulcis and Their Biological Activities. : Ind. Crops Prod. 2014, 52, 745–751. doi: 10.1016/j.indcrop.2013.12.006
  • Lokina, S.; Suresh, R.; Giribabu, K.; Stephen, A.; Sundaram, R.L.; Narayanan, V. Spectroscopic Investigations, Antimicrobial, and Cytotoxic Activity of Green Synthesized Gold Nanoparticles. Spectrochim. Acta Part A 2014, 129, 484–490. doi: 10.1016/j.saa.2014.03.100
  • Aromal, S.A.; Vidhu, V.; Philip, D. Green Synthesis of Well-dispersed Gold Nanoparticles Using Macrotyloma uniflorum. Spectrochim. Acta Part A 2012, 85 (1), 99–104. doi: 10.1016/j.saa.2011.09.035
  • Song, J.Y.; Jang, H.-K.; Kim, B.S. Biological Synthesis of Gold Nanoparticles Using Magnolia kobus and Diopyros kaki Leaf Extracts. Process Biochem. 2009, 44 (10), 1133–1138. doi: 10.1016/j.procbio.2009.06.005
  • Yang, N.; WeiHong, L.; Hao, L. Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and Its In Vitro Cytotoxic Effect on Two Normal Cells. Mater. Lett. 2014, 134, 67–70. doi: 10.1016/j.matlet.2014.07.025
  • Suman, T.; Rajasree, S.R.; Ramkumar, R.; Rajthilak, C.; Perumal, P. The Green Synthesis of Gold Nanoparticles Using an Aqueous Root Extract of Morinda citrifolia L. Spectrochim. Acta Part A 2014, 118, 11–16. doi: 10.1016/j.saa.2013.08.066
  • Philip, D.; Unni, C.; Aromal, S.A.; Vidhu, V. Murraya koenigii Leaf-assisted Rapid Green Synthesis of Silver and Gold Nanoparticles. Spectrochim. Acta Part A 2011, 78 (2), 899–904. doi: 10.1016/j.saa.2010.12.060
  • Muthukumar, T.; Sambandam, B.; Aravinthan, A.; Sastry, T.P.; Kim, J.-H. Green Synthesis of Gold Nanoparticles and Their Enhanced Synergistic Antitumor Activity Using HepG2 and MCF7 Cells and Its Antibacterial Effects. Process Biochem. 2016, 51 (3), 384–391. doi: 10.1016/j.procbio.2015.12.017
  • Tahir, K.; Nazir, S.; Li, B.; Khan, A.U.; Khan, Z.U.H.; Gong, P.Y.; Khan, S.U.; Ahmad, A. Nerium oleander Leaves Extract Mediated Synthesis of Gold Nanoparticles and Its Antioxidant Activity. Mater. Lett. 2015, 156, 198–201. doi: 10.1016/j.matlet.2015.05.062
  • Philip, D.; Unni, C. Extracellular Biosynthesis of Gold and Silver Nanoparticles Using Krishna Tulsi (Ocimum sanctum) Leaf. Phys. E 2011, 43 (7), 1318–1322. doi: 10.1016/j.physe.2010.10.006
  • Khalil, M.M.; Ismail, E.H.; El-Magdoub, F. Biosynthesis of Au Nanoparticles Using Olive Leaf Extract: 1st Nano Updates. Arabian J. Chem. 2012, 5 (4), 431–437. doi: 10.1016/j.arabjc.2010.11.011
  • Parida, U.K.; Bindhani, B.K.; Nayak, P. Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium cepa) Extract. World J. Nano Sci. Technol. 2011, 1 (4), 93–98. doi:10.4236/wjnse.2011.14015.
  • Zayed, M.F.; Eisa, W.H. Phoenix dactylifera L. Leaf Extract Phytosynthesized Gold Nanoparticles;Controlled Synthesis and Catalytic Activity. Spectrochim. Acta Part A 2014, 121, 238–244. doi: 10.1016/j.saa.2013.10.092
  • Islam, N.U.; Jalil, K.; Shahid, M.; Muhammad, N.; Rauf, A. Pistacia integerrima Gall Extract Mediated Green Synthesis of Gold Nanoparticles and Their Biological Activities. Arabian J. Chem. 2015. doi:10.1016/j.arabjc.2015.02.014.
  • Mata, R.; Bhaskaran, A.; Sadras, S.R. Green-synthesized Gold Nanoparticles from Plumeria alba Flower Extract to Augment Catalytic Degradation of Organic Dyes and Inhibit Bacterial Growth. Particuology 2016, 24, 78–86. doi: 10.1016/j.partic.2014.12.014
  • Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dey, M.; Dhar, S.S. Green Synthesis of Gold Nanoparticles Using Pogestemon benghalensis (B) O. Ktz. Leaf Extract and Studies of Their Photocatalytic Activity in Degradation of Methylene Blue. Mater. Lett. 2015, 148, 37–40. doi: 10.1016/j.matlet.2015.02.054
  • Byranvand, M.M.; Kharat, A.N. One Pot Green Synthesis of Gold Nanowires Using Pomegranate Juice. Mater. Lett. 2014, 134, 64–66. doi: 10.1016/j.matlet.2014.07.046
  • Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green Synthesis and Characterizations of Silver and Gold Nanoparticles Using Leaf Extract of Rosa rugosa. Colloids Surf. A 2010, 364 (1), 34–41. doi: 10.1016/j.colsurfa.2010.04.023
  • Ahmed, K.B.A.; Subramanian, S.; Sivasubramanian, A.; Veerappan, G.; Veerappan, A. Preparation of Gold Nanoparticles Using Salicornia brachiata Plant Extract and Evaluation of Catalytic and Antibacterial Activity. Spectrochim. Acta Part A 2014, 130, 54–58. doi: 10.1016/j.saa.2014.03.070
  • Dhas, T.S.; Kumar, V.G.; Abraham, L.S.; Karthick, V.; Govindaraju, K. Sargassum myriocystum Mediated Biosynthesis of Gold Nanoparticles. Spectrochim. Acta Part A 2012, 99, 97–101. doi: 10.1016/j.saa.2012.09.024
  • Namvar, F.; Azizi, S.; Ahmad, M.B.; Shameli, K.; Mohamad, R.; Mahdavi, M.; Tahir, P.M. Green Synthesis and Characterization of Gold Nanoparticles Using the Marine Macroalgae Sargassum muticum. Res. Chem. Intermed. 2015, 41 (8), 5723–5730. doi: 10.1007/s11164-014-1696-4
  • Das, J.; Velusamy, P. Catalytic Reduction of Methylene Blue Using Biogenic Gold Nanoparticles from Sesbania grandiflora L. J. Taiwan Inst. Chem. Eng. 2014, 45 (5), 2280–2285. doi: 10.1016/j.jtice.2014.04.005
  • Sharma, B.; Purkayastha, D.D.; Hazra, S.; Gogoi, L.; Bhattacharjee, C.R.; Ghosh, N.N.; Rout, J. Biosynthesis of Gold Nanoparticles Using a Freshwater Green Alga, Prasiola crispa. Mater. Lett. 2014, 116, 94–97. doi: 10.1016/j.matlet.2013.10.107
  • Muthuvel, A.; Adavallan, K.; Balamurugan, K.; Krishnakumar, N. Biosynthesis of Gold Nanoparticles Using Solanum nigrum Leaf Extract and Screening Their Free Radical Scavenging and Antibacterial Properties. Biomed. Prev. Nutr. 2014, 4 (2), 325–332. doi: 10.1016/j.bionut.2014.03.004
  • Khademi-Azandehi, P.; Moghaddam, J. Green Synthesis, Characterization and Physiological Stability of Gold Nanoparticles from Stachys lavandulifolia Vahl Extract. Particuology 2015, 19, 22–26. doi: 10.1016/j.partic.2014.04.007
  • Sadeghi, B.; Mohammadzadeh, M.; Babakhani, B. Green Synthesis of Gold Nanoparticles Using Stevia rebaudiana Leaf Extracts: Characterization and Their Stability. J. Photochem. Photobiol. B 2015, 148, 101–106. doi: 10.1016/j.jphotobiol.2015.03.025
  • Rajathi, F.A.A.; Parthiban, C.; Kumar, V.G.; Anantharaman, P. Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum marginatum (kützing). Spectrochim. Acta Part A 2012, 99, 166–173. doi: 10.1016/j.saa.2012.08.081
  • Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles. Process Biochem. 2010, 45 (7), 1065–1071. doi: 10.1016/j.procbio.2010.03.024
  • Ramakrishna, M.; Babu, D.R.; Gengan, R.; Chandra, S.; Rao, G.N. Green Synthesis of Gold Nanoparticles Using Marine Algae and Evaluation of Their Catalytic Activity. J. Nanostruct. Chem. 2016, 6 (1), 1–13. doi: 10.1007/s40097-015-0173-y
  • Sadeghi, B. Zizyphus mauritiana Extract-mediated Green and Rapid Synthesis of Gold Nanoparticles and its Antibacterial Activity. J. Nanostruct. Chem. 2015, 5 (3), 265–273. doi: 10.1007/s40097-015-0157-y
  • Devi, P.R.; Kumar, C.S.; Selvamani, P.; Subramanian, N.; Ruckmani, K. Synthesis and Characterization of Arabic Gum Capped Gold Nanoparticles for Tumor-targeted Drug Delivery. Mater. Lett. 2015, 139, 241–244. doi: 10.1016/j.matlet.2014.10.010
  • Geethalakshmi, R.; Sarada, D. Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from Trianthema decandra L. Ind. Crops Prod. 2013, 51, 107–115. doi: 10.1016/j.indcrop.2013.08.055
  • Bindhu, M.; Umadevi, M. Silver and Gold Nanoparticles for Sensor and Antibacterial Applications. Spectrochim. Acta Part A 2014, 128, 37–45. doi: 10.1016/j.saa.2014.02.119
  • Sujitha, M.V.; Kannan, S. Green Synthesis of Gold Nanoparticles Using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) Aqueous Extract and its Characterization. Spectrochim. Acta Part A 2013, 102, 15–23. doi: 10.1016/j.saa.2012.09.042
  • Vankar, P.S.; Bajpai, D. Preparation of Gold Nanoparticles from Mirabilis jalapa Flowers. Indian J Biochem Biophys 2010, 47 (3), 157–160.
  • Godipurge, S.; Yallappa, S.; Biradar, N.J.; Biradar, J.; Dhananjaya, B.; Hegde, G.; Jagadish, K.; Hegde, G. A Facile and Green Strategy for the Synthesis of Au, Ag and Au–Ag Alloy Nanoparticles Using Aerial Parts of R. hypocrateriformis Extract and Their Biological Evaluation. Enzyme Microb. Technol. 2016, 95, 174–184. doi: 10.1016/j.enzmictec.2016.08.006
  • Baharara, J.; Ramezani, T.; Divsalar, A.; Mousavi, M.; Seyedarabi, A. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells. Avicenna J Med Biotech 2016, 8 (2), 75–83.
  • Noruzi, M.; Zare, D.; Davoodi, D. A Rapid Biosynthesis Route for the Preparation of Gold Nanoparticles by Aqueous Extract of Cypress Leaves at Room Temperature. Spectrochim. Acta Part A 2012, 94, 84–88. doi: 10.1016/j.saa.2012.03.041
  • Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M. Green Synthesis of Silver, Gold and Silver/Gold Bimetallic Nanoparticles Using the Gloriosa superba Leaf Extract and Their Antibacterial and Antibiofilm Activities. Microb. Pathog. 2016, 101, 1–11. doi: 10.1016/j.micpath.2016.10.011
  • Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid Green Synthesis of Silver and Gold Nanoparticles Using Dendropanax morbifera Leaf Extract and Their Anticancer Activities. Int. J. Nanomed. 2016, 11, 3691–3701. doi: 10.2147/IJN.S97181
  • Khan, A.U.; Yuan, Q.; Wei, Y.; Khan, G.M.; Khan, Z.U.H.; Khan, S.; Ali, F.; Tahir, K.; Ahmad, A.; Khan, F.U. Photocatalytic and Antibacterial Response of Biosynthesized Gold Nanoparticles. J. Photochem. Photobiol. B 2016, 162, 273–277. doi: 10.1016/j.jphotobiol.2016.06.055
  • Oza, G.; Pandey, S.; Mewada, A.; Kalita, G.; Sharon, M.; Phata, J.; Ambernath, W.; Sharon, M. Facile Biosynthesis of Gold Nanoparticles Exploiting Optimum pH and Temperature of Fresh Water Algae Chlorella pyrenoidusa. Adv. Appl. Sci. Res. 2012, 3 (3), 1405–1412.
  • Poojary, M.M.; Passamonti, P.; Adhikari, A.V. Green Synthesis of Silver and Gold Nanoparticles Using Root Bark Extract of Mammea suriga: Characterization, Process Optimization, and Their Antibacterial Activity. BioNanoScience 2016, 6 (2), 110–120. doi: 10.1007/s12668-016-0199-8
  • Patra, J.M.; Panda, S.S.; Dhal, N.K. A Review on Green Synthesis of Gold Nanoparticles. Int. J. Pharm. Bio. Sci. 2015, 6 (3), 251–261.
  • Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110 (14), 7238–7248. doi: 10.1021/jp057170o
  • Stern, J.M.; Stanfield, J.; Lotan, Y.; Park, S.; Hsieh, J.-T.; Cadeddu, J.A. Efficacy of Laser-activated Gold Nanoshells in Ablating Prostate Cancer Cells In Vitro. J. Endourol. 2007, 21 (8), 939–943. doi: 10.1089/end.2007.0437
  • Dykman, L.; Khlebtsov, N. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae 2011, 3 (2), 34–55.
  • Kumar, A.; Boruah, B.M.; Liang, X.-J. Gold Nanoparticles: Promising Nanomaterials for the Diagnosis of Cancer and HIV/AIDS. J. Nanomater. 2011, 2011. doi:10.1155/2011/202187.
  • Liu, J.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme-directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003, 125 (22), 6642–6643. doi: 10.1021/ja034775u
  • Luo, X.-L.; Xu, J.-J.; Du, Y.; Chen, H.-Y. A Glucose Biosensor Based on Chitosan–Glucose Oxidase–Gold Nanoparticles Biocomposite Formed by One-step Electrodeposition. Anal. Biochem. 2004, 334 (2), 284–289. doi: 10.1016/j.ab.2004.07.005
  • Lopez, N.; Janssens, T.; Clausen, B.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J.K. On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-temperature CO Oxidation. J. Catal. 2004, 223 (1), 232–235. doi: 10.1016/j.jcat.2004.01.001
  • Hernández, J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J.M. Methanol Oxidation on Gold Nanoparticles in Alkaline Media: Unusual Electrocatalytic Activity. Electrochim. Acta 2006, 52 (4), 1662–1669. doi: 10.1016/j.electacta.2006.03.091
  • Glišić, B.Đ.; Djuran, M.I. Gold Complexes as Antimicrobial Agents: An Overview of Different Biological Activities in Relation To the Oxidation State of the Gold Ion and the Ligand Structure. Dalton Trans. 2014, 43 (16), 5950–5969. doi: 10.1039/C4DT00022F
  • Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine 2007, 3 (1), 95–101. doi: 10.1016/j.nano.2006.12.001
  • Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Zeng, H.-Y.; You-Sheng, O.-Y.; Chen, Y.-B. Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85 (4), 1115–1122. doi: 10.1007/s00253-009-2159-5
  • Nagy, A.; Harrison, A.; Sabbani, S.; Munson., R.S., Jr.; Dutta, P.K.; Waldman, W.J. Silver Nanoparticles Embedded in Zeolite Membranes: Release of Silver Ions and Mechanism of Antibacterial Action. Int. J. Nanomed. 2011, 6, 1833–1852.
  • Boisselier, E.; Astruc, D. Gold Nanoparticles in Nanomedicine: Preparations, Imaging, Diagnostics, Therapies and Toxicity. Chem. Soc. Rev. 2009, 38 (6), 1759–1782. doi: 10.1039/b806051g
  • Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49 (19), 3280–3294. doi: 10.1002/anie.200904359
  • Gu, H.; Ho, P.; Tong, E.; Wang, L.; Xu, B. Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Lett. 2003, 3 (9), 1261–1263. doi: 10.1021/nl034396z
  • Gopinath, K.; Gowri, S.; Arumugam, A. Phytosynthesis of Silver Nanoparticles Using Pterocarpus santalinus Leaf Extract and Their Antibacterial Properties. J. Nanostruct. Chem. 2013, 3 (1), 68. doi: 10.1186/2193-8865-3-68
  • Cui, Y.; Zhao, Y.; Tian, Y.; Zhang, W.; Lü, X.; Jiang, X. The Molecular Mechanism of Action of Bactericidal Gold Nanoparticles on Escherichia coli. Biomaterials 2012, 33 (7), 2327–2333. doi: 10.1016/j.biomaterials.2011.11.057
  • Ahmad, T.; Wani, I.A.; Lone, I.H.; Ganguly, A.; Manzoor, N.; Ahmad, A.; Ahmed, J.; Al-Shihri, A.S. Antifungal Activity of Gold Nanoparticles Prepared by Solvothermal Method. Mater. Res. Bull. 2013, 48 (1), 12–20. doi: 10.1016/j.materresbull.2012.09.069
  • Herdt, A.R.; Drawz, S.M.; Kang, Y.; Taton, T.A. DNA Dissociation and Degradation at Gold Nanoparticle Surfaces. Colloids Surf. B 2006, 51 (2), 130–139. doi: 10.1016/j.colsurfb.2006.06.006
  • Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006, 6 (4), 866–870. doi: 10.1021/nl052326h
  • Lin, C.; Tao, K.; Hua, D.; Ma, Z.; Zhou, S. Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules 2013, 18 (10), 12609–12620. doi: 10.3390/molecules181012609
  • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of Silver Nanoparticles Using Citrus sinensis Peel Extract and its Antibacterial Activity. Spectrochim. Acta Part A 2011, 79 (3), 594–598. doi: 10.1016/j.saa.2011.03.040
  • Zhang, Y.; Shareena Dasari, T.P.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Health Part C 2015, 33 (3), 286–327. doi: 10.1080/10590501.2015.1055161
  • Payne, J.N.; Waghwani, H.K.; Connor, M.G.; Hamilton, W.; Tockstein, S.; Moolani, H.; Chavda, F.; Badwaik, V.; Lawrenz, M.B.; Dakshinamurthy, R. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity. Front. Microbiol. 2016, 7, 634. doi:10.3389/fmicb.2016.00607.
  • Mishra, A.; Tripathy, S.K.; Yun, S.-I. Bio-synthesis of Gold and Silver Nanoparticles from Candida guilliermondii and Their Antimicrobial Effect Against Pathogenic Bacteria. J. Nanosci. Nanotechnol. 2011, 11 (1), 243–248. doi: 10.1166/jnn.2011.3265
  • Ramesh, V.; Armash, A. Green Synthesis of Gold Nanoparticles Against Pathogens and Cancer Cells. IJPR 2015, 5 (10), 250–256.
  • Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B. Green Biosynthesis of Gold Nanoparticles Using Galaxaura elongata and Characterization of Their Antibacterial Activity. Arabian J. Chem. 2013. doi:10.1016/j.arabjc.2013.11.044.
  • Mishra, A.; Kumari, M.; Pandey, S.; Chaudhry, V.; Gupta, K.; Nautiyal, C. Biocatalytic and Antimicrobial Activities of Gold Nanoparticles Synthesized by Trichoderma sp. Bioresour. Technol. 2014, 166, 235–242. doi: 10.1016/j.biortech.2014.04.085
  • Bhau, B.; Ghosh, S.; Puri, S.; Borah, B.; Sarmah, D.; Khan, R. Green Synthesis of Gold Nanoparticles from the Leaf Extract of Nepenthes khasiana and Antimicrobial Assay. Adv. Mater. Lett. 2015, 6, 55–58. doi: 10.5185/amlett.2015.5609
  • Nagaraj, B.; Divya, T.; Malakar, B.; Krishnamurthy, N.; Dinesh, R.; Negrila, C.; Ciobanu, C.; Iconaru, S. Phytosynthesis of Gold Nanoparticles Using Caesalpinia pulcherrima (Peacock Flower) Flower Extract and Evaluation of Their Antimicrobial Activities. Dig. J. Nanomat. Biostru. 2012, 7 (3), 899–905.
  • Liny, P.; Divya, T.; Barasa, M.; Nagaraj, B.; Krishnamurthy, N.; Dinesh, R. Preparation of Gold Nanoparticles from Helianthus annuus (Sun Flower) Flowers and Evaluation of Their Antimicrobial Activities. Int. J. Pharm. Biol. Sci. 2012, 3 (1), 439–446.
  • Nagaraj, B.; Malakar, B.; Divya, T.; Krishnamurthy, N.; Liny, P.; Dinesh, R.; Iconaru, S.; Ciobanu, C. Synthesis of Plant Mediated Gold Nanoparticles Using Flower Extracts of Carthamus tinctorius L.(safflower) and Evaluation of Their Biological Activities. Dig. J. Nanomat. Biostru. 2012, 7, 1289–1296.