289
Views
7
CrossRef citations to date
0
Altmetric
Articles

Plant–animal interactions in two forest herbs along a tree and herb diversity gradient

, , &
Pages 205-216 | Received 03 Oct 2011, Accepted 01 Mar 2013, Published online: 24 Apr 2013
 

Abstract

Background: Plant diversity can influence numerous ecosystem processes, including plant–animal interactions, which, in turn, will affect plant growth and fitness. At present, little is known on how plant–animal interactions in forests respond to gradients in tree and herb-layer diversity.

Aims: To quantify how invertebrate herbivory, pollination-dependent seed production and post-dispersal seed predation vary along a gradient of tree and herb diversity in a semi-natural temperate deciduous forest.

Methods: Potted individuals of the understorey herbs Lathyrus vernus and Primula elatior were exposed in 40 forest plots along a natural gradient of tree and herb diversity for 3 months to record seed production and leaf damage caused by invertebrate herbivores. In half the plants, pollinators were experimentally excluded to test if seed production depended on insect pollination. In Lathyrus vernus linkages between below- and above-ground herbivory were tested by inoculating plants with root-feeding nematodes. To study seed predation, we measured seed removal from seed depots that were selectively accessible to different seed predator groups.

Results: Herbivore damage decreased with increasing tree diversity in P. elatior. In L. vernus, above-ground herbivory was higher in nematode-treated plants than in control plants. Seed production in L. vernus, which strongly depended on insect pollination, showed a positive relationship with tree diversity. Seed predation was positively related to herb diversity in L. vernus, but only weakly so in P. elatior. While both vertebrates and invertebrates acted as seed predators of L. vernus, seeds of P. elatior were mainly predated by invertebrates.

Conclusions: The fitness of understorey plants is linked to tree and herb diversity via changes in plant-invertebrate interactions. However, species-specific responses of study plants underline the importance of species identity effects in addition to effects of biodiversity per se.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 364.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.