193
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Production of lignofuels and electrofuels by extremely thermophilic microbes

, , , , &
Pages 499-515 | Published online: 30 Jan 2015
 

Abstract

Extreme thermophiles are microorganisms that grow optimally at elevated temperatures (≥ 70°C). They could play an important role in the emerging renewable energy landscape by exploiting thermophily to produce liquid transportation fuels. For example, Caldicellulosiruptor species can grow on unpretreated plant biomass near 80°C utilizing novel multi-domain glycoside hydrolases. Through metabolic engineering, advanced biofuels compatible with existing infrastructure liquid biofuels, so-called lignofuels, could be produced to establish consolidated bioprocessing at high temperatures. In another case, a new paradigm, electrofuels, addresses the inefficiency of biofuel production through the direct synthesis of advanced fuels from carbon dioxide using hydrogen gas as the electron carrier. This requires coupling of biological electron utilization to carbon dioxide fixation and ultimately to fuel synthesis. Using a hyperthermophilic host Pyrococcus furiosus and synthetic metabolic pathways comprised of genes from less thermophilic sources, temperature-regulated biosynthesis of industrial organic chemicals and liquid fuel molecules are possible. Herein, we review recent progress towards the synthesis of lignofuels and electrofuels by extremely thermophilic microorganisms.

Acknowledgements

This work described here was supported in part by the US National Science Foundation (CBET-1264052 and CBET-1264053) and by the US Department of Energy (DOE) through the ARPA-E Electrofuels Program (DE-AR0000081), the Division of Chemical Sciences, Geosciences and Biosciences of the Office of Basic Energy Sciences (DE-FG05-95ER20175), and the BioEnergy Science Center (DE-PS02-06ER64304), a Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.