349
Views
29
CrossRef citations to date
0
Altmetric
Articles

Comparative studies of CO2 capture using acid and base modified activated carbon from sugarcane bagasse

, , , , , & show all
Pages 719-728 | Received 05 Sep 2016, Accepted 12 Feb 2017, Published online: 10 Apr 2017
 

ABSTRACT

This study reports the potential of acid and base modified sugarcane bagasse activated carbon for carbon dioxide (CO2) adsorption. The rate of CO2 adsorption by the unmodified (UMAC), acid (AMAC) and base modified activated carbon (BMAC) was determined gravimetrically via weight differential measurement. Surface morphology and functional group of the adsorbent before and after adsorption were also determined. The adsorbents performance was evaluated using a cylindrical glass column equipped with a digital weighing balance. Characterization of adsorbents showed that BMAC had a better pore structure thereby making it the most effective adsorbent for CO2. CO2 adsorption increased over time in the order UMAC < AMAC < BMAC. The highest amount (148.5 mg.g−1) of CO2 was adsorbed at 25°C and 25 min. The adsorption kinetics followed second-order kinetics with a regression coefficient (R2) of 0.9967. The activation energy (Ea) of the process was evaluated to be 5.77, 13.02 and 13.55 kJ.mol−1 for BMAC, AMAC and UMAC respectively. The low Ea observed suggests that CO2 is weakly bonded to the adsorbent surface. The acid and base modified sugarcane bagasse activated carbon produced is characterized with enhanced capacity for CO2 adsorption.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.