198
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of bioethanol–diesel blends, exhaust gas recirculation rate and injection timing on performance, emission and combustion characteristics of a common rail diesel engine

, , &
Pages 511-523 | Received 09 Jan 2017, Accepted 27 Mar 2017, Published online: 25 May 2017
 

ABSTRACT

This investigation is focused on the effect of exhaust gas recirculation (EGR) and injection timing on the performance, combustion and exhaust emission characteristics of common rail direct injection (CRDI) engine fueled with bioethanol-blended diesel using computational fluid dynamics (CFD) simulation. Simulation is carried out for various EGR rates (0, 10, 20 and 30%), two different injection timings, and two different bioethanol–diesel blends (10 and 20%) at injection pressure. The equivalence ratio is kept constant in all the cases of bioethanol–diesel blends. The results indicate that the mean CO formation and ignition delay increase, whereas mean NO formation and in-cylinder temperature decrease, with increase in the EGR rate. Further, with an increase in percentage of the bioethanol blends, CO and soot formation decrease as compared to neat diesel. A significant increase in in-cylinder pressure (15%) is found at 14° before top dead centre (BTDC) compared to 9° BTDC, which leads to an increase in indicated thermal efficiency of 4% for neat diesel at 30% EGR. In the present study, maximum indicated thermal efficiency is obtained in the case of 10 and 20% bioethanol–diesel blend, and remains constant for all EGR rates considered in the study. Obtained results are validated with the available literature data and indicate good agreement.

Acknowledgements

The authors would like to acknowledge AVL-AST, Graz, Austria, for the granted use of AVL-FIRE under the University Partnership Program.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.