180
Views
0
CrossRef citations to date
0
Altmetric
Articles

Insights on sustainable fuels: a new benzimidazole derivative with potential as a diesel-biodiesel blend additive

, , , , , , , & ORCID Icon show all
Pages 279-292 | Received 24 Jun 2022, Accepted 01 Oct 2022, Published online: 19 Oct 2022
 

Abstract

Biodiesel is an important fuel in the energy industry with recurrent durability and stability problems. The use of molecular-based technologies to preserve the physicochemical properties of diesel-biodiesel blend is a promising path on additive studies. To minimize oxidative stability problems and get insights into the additive structural features, we evaluated a new benzimidazole derivative as a potential additive for diesel-biodiesel blends. In the study, an extensive structural description and supramolecular topological analysis, besides theoretical calculations to understand specific physicochemical properties related to oxidative stability when added to biofuel, were carried out. Also, the synthesis of the title compound in the presence of graphite oxide shows a sustainable synthetic route, and the supramolecular arrangement has only C–H···O and C–H···π interactions that are related to antibacterial and antioxidant activity. The new benzimidazole derivative structure has two alkoxy groups in the para position of the aromatic ring acting as electron-donating substituents – desirable conformations for antioxidant activity. The energy of 640.99 kJ/mol in the Frontier Molecular Orbitals indicates high kinetic stability and the oxidative stability in the diesel-biodiesel blend (B20) was 26.3 h (better than commercial additives). The obtained results indicate the potential of benzimidazole derivative as a diesel-biodiesel blend additive.

Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa de Goiás (FAPEG). Theoretical calculations were performed in the High Performance Computing Center of the Universidade Estadual de Goiás (UEG), and Rancimat experiments were performed by the Research and Energy Efficiency Center (CAOA Montadora de Veículos Ltda).

Conflicts of interest

There are no conflicts of interest to declare.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.