167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of pharmaceutical waste as a heterogeneous catalyst for transesterification of waste cooking oil: biofuel production and its modeling using predictive tools

, , , , &
Pages 415-431 | Received 15 May 2023, Accepted 30 Aug 2023, Published online: 14 Sep 2023
 

Abstract

In this study, for the first time, pharmaceutical waste was used as a heterogeneous catalyst to produce biofuel from waste cooking oil (WCO). An efficient and low-cost heterogeneous catalyst was prepared from waste tablets of calcium carbonate (CaCO3) and magnesium oxide (MgO). A certain amount of alumina nanoparticles (Al2O3) was added to the pharmaceutical waste to participate in the transesterification of the WCO, which positively affected mass yield. The mentioned catalysts were identified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), field-emission scanning electron microscopy (FESEM), and Brunauer–Emmett–Teller (BET) analyses. According to the BET analysis, the specific surface of the catalysts increased. Also, the effects of various reaction parameters such as temperature, time, catalyst loading, and the oil: methanol ratio were investigated and optimized by response surface methodology (RSM). Furthermore, an adaptive neuro-fuzzy inference system (ANFIS) was coupled with a firefly optimization algorithm to predict biofuel yield. Under optimum conditions (Al2O3 0.952 wt%, catalyst 4.978wt%, oil:methanol ratio 0.5 vol:vol, reaction time 120 min, and reaction temperature 69.6 °C), the mass yield of MgO and CaO catalysts was 95.6 and 90.4 wt%, respectively. The composition of biofuel was identified using gas chromatography–mass spectrometry (GC-MS).

Acknowledgements

The authors thank the authorities of the nano-laboratory of the faculty of environment for providing us with the facilities. We are also thankful to the personnel of the faculty of science at the University of Tehran for their help in GC-MS analysis. We thank the authorities of the University of Isfahan for XRD and FT-IR measurements.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.