1,707
Views
134
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings

, , , , &
Pages 872-879 | Received 27 Nov 2001, Accepted 05 Jun 2002, Published online: 07 Feb 2012
 

Abstract

The high temperature strengthening mechanism of previously manufactured 12Cr-ODS ferritic steel claddings was clarified. In the recrystallized 12Cr-2W-0.3Ti-0.24Y2O3-ODS ferritic steel cladding, αY2TiO5 type complex oxide formation was responsible for the drastic reduction of oxide particle size and the resulting shortened distance between particles, which led to superior internal creep rupture strength at 973 K because of the high resistance to gliding dislocation. Internal creep deformation was considered to be controlled by the grain boundary sliding associated with grain morphology: the near Σ11, Σ and Σ19 coincidence boundaries with a (110) common axis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.