313
Views
6
CrossRef citations to date
0
Altmetric
TECHNICAL REPORT

Comparative Studies of ENDF/B-6.8, JEF-2.2 and JENDL-3.2 Data Libraries by Monte Carlo Modeling of High Temperature Reactors on Plutonium Based Fuel Cycles

, &
Pages 1228-1236 | Received 31 May 2004, Accepted 13 Sep 2004, Published online: 15 Feb 2012
 

Abstract

We performed a numerical comparative analysis of the burnup capability of the Gas Turbine-Modular Helium Reactor (GT-MHR) by the Monte Carlo Continuous Energy Burnup Code (MCB). The MCB code is an extension of MCNP that includes the burnup implementation; it adopts continuous energy cross sections and it evaluates the transmutation trajectories for over 2,400 decaying nuclides. We equipped the MCB code with three different nuclear data libraries: JENDL-3.2, JEF-2.2 and ENDF/B-6.8 processed for temperatures from 300 to 1,800K.

The GT-MHR model studied in this paper is fueled by actinides coming from the Light Water Reactors waste, converted into two different types of fuel: Driver Fuel and Transmutation Fuel. The Driver Fuel supplies the fissile nuclides needed to maintain the criticality of the reactor, whereas the Transmutation Fuel depletes non-fissile isotopes and controls reactivity excess. We set the refueling and shuffling period to one year and the in-core fuel residency time to three years.

The comparative analysis of the MCB code consists of accuracy and precision studies. In the accuracy studies, we performed the burnup calculation with different nuclear data libraries during the year at which the refueling and shuffling schedule set the equilibrium of the fuel composition. In the precision studies, we repeated the same simulations 20 times with a different pseudorandom number stride and the same nuclear data library.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.