126
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Computer models offer new insights into the mechanics of rock climbing

, &
Pages 120-131 | Received 07 Apr 2012, Accepted 03 Oct 2012, Published online: 21 Dec 2012
 

Abstract

Three computer models of varying complexity were developed in order to investigate the kinematics, kinetics, muscle operating ranges, and energetics of rock climbing. First, inverse dynamic models were used to investigate the joint angles and torques used in climbing and to quantify the total mechanical work required for typical rock climbing. Climbing experience was found to have a significant effect on the kinematics used in climbing; however, there were no significant differences in mechanical work. Second, a musculoskeletal model of the whole body was developed, this model combined with the kinematic data was used to analyze the operating ranges of the upper and lower limb muscles during climbing. In general, the experienced climbers employed kinematic motions that corresponded to muscle fibers used for climbing operating much closer to their optimum length than the kinematics of inexperienced climbers. Third, a forward dynamic model was developed to predict the metabolic goal of climbing. The results of this model suggest that an experienced climbing style minimizes the fatigue of muscles while an inexperienced climbing style minimizes the total joint torques generated.

Acknowledgements

The authors would like to thank the staff at the Motion Analysis and Motor Performance Lab, KCRC, at the University of Virginia. This work was funded by the DARPA-DOD Z-Man Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.