289
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Upgrading Low-Rank Coal Using a Dry, Density-Based Separator Technology

, , &
Pages 198-209 | Published online: 16 Apr 2014
 

Abstract

Low-rank coal such as the coal in the Powder River Basin (PRB) is typically direct shipped without any need for upgrading. Due to the lack of on-site processing capabilities, coal that is mixed with out-of-seam dilution during the mining process is typically left in the mine pit. In some cases, the loss could amount to 5% of the total reserve. Research conducted on laboratory and pilot-scale pneumatic air table separators indicates that sufficient upgrading can be achieved on the +1 mm fraction of the reject material to meet typical end-user specifications. Low-rank coals are especially susceptible to upgrading by density-based processes due its naturally lower density relative to higher rank coals. For example, a PRB coal containing 26% feed ash was reduced to 7% ash content with a combustible recovery of 83% on a dry basis from a coal source that was reject from the mining process. Partition curve data revealed the achievement of relatively low Ep values in the range of 0.12 to 0.22 with separation densities between 1.58 and 1.88 gm/cm3, respectively. Effective separations were achieved using air table separators for particle sizes larger than 1 mm.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gcop.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.