209
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Particle-Size Distribution and Degree of Saturation on Coal-Compacting Processes within a Coke-Making Operation

, &
Pages 216-231 | Received 24 Jan 2015, Accepted 26 Feb 2015, Published online: 07 May 2015
 

Abstract

The bulk density of an oven charge is a very important factor for the selection of the coking coals and coke quality in a coke-making process for producing blast furnace coke. Major factors influencing the bulk density of coal are moisture content, particle surface properties, particle shape, particle-size distribution, and particle density. The bulk density can be increased significantly through compacting the coal to a coal cake prior to oven charging. The objective of the compaction processes is the production of a cake with high density and as well as a sufficient mechanical strength in order to ensure a trouble-free cake charging into the coke oven. The present article deals with the evaluation of the compaction process based on lab-scale test work. The two subprocesses of densification and strengthening during both stamping and pressing were theoretically and experimentally investigated using compaction test units in combination with a strength-test device. Systematic investigations showed that particle-size distribution and degree of saturation have significant influence on cake density and mechanical properties of the coal cake.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.