1,168
Views
6
CrossRef citations to date
0
Altmetric
Articles

Evaluating urban outdoor thermal comfort: a validation of ENVI-met simulation through field measurement

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 268-286 | Received 16 Nov 2021, Accepted 17 Feb 2022, Published online: 01 Mar 2022
 

Abstract

Thermal comfort plays a significant role in encouraging people to utilize outdoor spaces. Therefore, this feature must be analyzed and evaluated in order to be improvised. Computational fluid dynamics (CFD) is an alternative technique that predicts thermal comfort and environmental parameters. Validation of CFD is important to ensure its effectiveness. This study assessed the performance of ENVI-met for its ability to estimate thermal indices (PET) by comparing it to field measurement for various points in a street canyon in Port Said, Egypt, throughout the summer and winter seasons. Except for the limited air velocity correlation, the results presented very good agreement, particularly with respect to the final results of the PET visually curved and numerical values, with an index of agreement value ranging from 0.81 to 0.95. The study's conclusions concern the use of the ENVI-met simulation model as a tool for assessing outdoor thermal comfort.

Highlights

  • Outdoor thermal comfort was investigated in a hot-humid climate.

  • The effectiveness of using a Computational fluid dynamics (CFD) simulation software program such as ENVI-met was evaluated as an alternative technique in urban design.

  • Varied environmental parameters and outdoor thermal comfort indices were evaluated.

  • It was concluded that validating CFD simulation through field measurement was significant in offering integrated decisions for urban design.

Abbreviations: Environmental parameters; Ta; Air temperature; Tmrt; Mean radiant temperature; RH; Relative humidity; Va; Air velocity; Thermal comfort indices; PMV; Predicted mean vote; r; PPD; Predicted percentage of dissatisfaction; PET; Physiological Equivalent Temperature; UTCI; Universal Thermal Climate; UCB; University of California-Berkeley; ETU; universal effective temperature; Simulation Software; CFD; Computational fluid dynamics; UCB; University of California-Berkeley; LES; Large Eddy Simulation; RANS; Reynolds Averaged Navier Stoke; Error calculations; r; Pearson correlation coefficient; R2; Coefficient of determination; RMSE; Root Mean Squared Error; MAE; Mean Absolute Error; IA; Index of agreement; ASHRAE; American Society of Heating; Refrigeration; and Air-Conditioning Engineers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 297.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.