209
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Residual concentrations of the flukicidal compound triclabendazole in dairy cows’ milk and cheese

, , , , , , , & show all
Pages 438-445 | Received 30 Sep 2010, Accepted 23 Dec 2010, Published online: 18 Feb 2011
 

Abstract

Triclabendazole (TCBZ) is a flukicidal halogenated benzimidazole compound extensively used in veterinary medicine. Liver fluke control in lactating dairy cattle is difficult because treatment should be implemented only during the dry period to avoid milk residues. However, control in endemic areas is usually implemented as regular treatments three to four times a year, even during the lactating period. Thus, information on TCBZ milk excretion and the risk of the presence of drug residues in fluid milk and milk-derivate products is essential. The experimental aims were to evaluate the comparative disposition kinetics of TCBZ and its sulpho-metabolites in plasma and milk in lactating dairy cattle after the oral administration (12 mg kg−1) of TCBZ and to assess the pattern of residues in cheese made with milk from treated dairy cows. Both TCBZ sulphoxide and sulphone metabolites but not TCBZ were detected in milk (up to 36 and 144 h, respectively) and plasma (up to 144 h) after oral administration of TCBZ. Residual concentrations of TCBZ sulpho-metabolites were found in cheese made with milk from treated animals. The total average residual concentration in fresh cheese was 13.0-fold higher than that obtained in milk used for its elaboration. The high concentrations of TCBZ sulpho-metabolites recovered in fresh cheese should be seriously considered before milk from treated cows is used for making dairy products.

Acknowledgements

The authors would like to acknowledge Dr Gottfried Büscher, from Novartis Animal Health, Inc., Basel, Switzerland, who kindly provided TCBZ and it sulpho-metabolites pure reference standards; and Ing. Piedra from Cajamarca University. This research was supported by a grant from the European Commission (FOOD-CT-023025-DELIVER).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.