206
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

, , , &
Pages 843-852 | Received 25 Sep 2012, Accepted 17 Jan 2013, Published online: 08 May 2013
 

Abstract

Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with considerably less fluid volume into a measuring chamber. Once there SEMs are held in a monolayer by a magnet. Light-emitting diodes (LEDs) are focused on the chamber to illuminate the SEMs – instead of lasers and they are imaged by a charge-coupled device (CCD) detector, offering a more compact sized, transportable and affordable system. The feasibility of utilising this system to develop a 3-plex SEMs-based imaging immunoassay (IMIA) for the screening of persistent organic pollutants (POPs) was studied. Moreover the performance characteristics of 3-plex IMIA were critically compared with the conventional 3-plex flow cytometric immunoassay (FCIA). Both SEM technologies have potential for the multiplex analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in buffer and fish extract with insignificant differences in assay sensitivities. Furthermore, we developed a faster and simpler, modified QuEChERS-like generic POPs extraction from tilapia fillet using sodium hydrogen carbonate as one of the salt additives and dispersive solid-phase extraction (dSPE) as a clean-up. Finally, a preliminary in-house validation using 40 different blank and spiked tilapia fillet samples was performed in both systems and the results obtained were critically compared. The lower-cost imaging SEMs-based system performed similarly to the original flow cytometer and, in combination with the new quicker QuEChERS-like extraction, it has high potential for future rapid screening of POPs in several other sample matrices such as other fish species, vegetable refined oils and environmental samples.

Acknowledgments

This research was part of the European Union project entitled ‘Contaminants in Food and Feed: Inexpensive Detection for Control of Exposure (acronym Conffidence)’ and was financially supported by the European Commission (Contract No. 211326-CP Collaborative Project) and the Dutch Ministry of Economic Affairs. The authors thank Professor Dietmar Knopp for providing the antibodies and conjugates for BaP, and Professors Jana Hjaslova, Kamila Kalachova and Monique Bienenmann-Ploum for their creative input.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.