279
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production

, , &
Pages 1279-1286 | Received 28 Dec 2012, Accepted 10 Apr 2013, Published online: 11 Jun 2013
 

Abstract

Rape crops with residues of acetamiprid, azoxystrobin and methidathion incurred from field trials were used to evaluate the effect of household and commercial crude rapeseed oil processing on the transfer of pesticide residues. The pesticides were applied at exaggerated dosage to quantify residue levels in processed samples. The processing procedure was conducted as closely as possible to the actual conditions in practice. The conditioning step removed at least 30% of pesticides, while azoxystrobin and methidathion were concentrated by at least 15% at the single pressing step. The residue level of methidathion was concentrated with a processing factor (PF) of 1.07, while azoxystrobin and acetamiprid decreased with PFs of 0.67 and 0.04, respectively, after all processing procedures. The overall magnitudes of acetamiprid, azoxystrobin and methidathion in rapeseed oil and meal were all decreased after processing compared with the magnitude of those in raw rapeseed.

Acknowledgements

This study was supported by the Chinese National Science Foundation, the People’s Republic of China (Project Number 31171872), and the Guangxi Special Guest Researcher Fund.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.