284
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Estimating tulathromycin withdrawal time in pigs using a physiologically based pharmacokinetics model

, , , , , & show all
Pages 1255-1263 | Received 30 Sep 2012, Accepted 15 Apr 2013, Published online: 14 Jun 2013
 

Abstract

A physiologically based pharmacokinetics model was developed to predict tulathromycin concentrations in edible swine tissues. Physiological parameters included volumes of and plasma flows through different tissues which were obtained from the literatures. The tissue/plasma partition coefficient was calculated according to the area method, and the model was validated through a comparison of predicted and observed concentrations. Withdrawal times in different tissues were predicted. The physiologically based pharmacokinetics model presented here provided accurate predictions of the observed concentrations in all tissues. The results showed that the injection site had the longest withdrawal time (21 days), followed by skin together with fat (19 days) and then kidney (10 days), lung (6 days), liver (4 days) and muscle (1 day). A withdrawal time of 21 days was finally predicted for tulathromycin in swine after a single intramuscular injection at 2.5 mg/kg body weight.

Acknowledgement

This study was supported in part by the National Key Technology R&D Program for the 11th five-year plan (2006BAD31B06).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.