308
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Ameliorative effects of Bacillus subtilis ANSB01G on zearalenone toxicosis in pre-pubertal female gilts

, , , , , , & show all
Pages 617-625 | Received 24 Jun 2014, Accepted 12 Oct 2014, Published online: 19 Nov 2014
 

Abstract

The purpose of this research was to investigate the toxicity of zearalenone (ZEA) on the growing performance, genital organs, serum hormones and histopathological changes of pre-pubertal female gilts, and to evaluate the efficacy of Bacillus subtilis ANSB01G in alleviating ZEA toxicosis in gilts. Eighteen pre-pubertal female gilts were randomly allocated to three treatments with one replicate per treatment. The gilts were fed following three diets for 24 days: the Control group was given a basic diet with normal corn; Treatment 1 (T1) was prepared by substituting corn naturally contaminated with ZEA for all normal corn in the basic diet (with a final concentrations of 238.57 μg kg−1 of ZEA); and Treatment 2 (T2) was prepared by mixing the T1 diet with 2 kg T−1 of fermented–dried culture of ANSB01G. The results showed that the presence of ZEA in diets significantly increased the vulva size and reproductive organ weight of the T1 gilts as compared with the Control group, and the addition of ANSB01G to diet naturally contaminated with ZEA obviously ameliorated these symptoms, as was observed in the T2 group. The presence of low doses of ZEA in the T1 diet had no significant effect on the level of follicle-stimulating hormone (FSH), luteotrophic hormone (LH) or serum oestradiol (E2) in the serum of gilts, but the prolactin (PRL) level in group T1 increased significantly. The gilts of the T1 group exhibited conspicuous cell enlargement and fatty degeneration of the corpus uteri, swelling, inflammation and lymphocyte infiltration of liver cells as compared with the Control group. The presence of ANSB01G can alleviate these hyperoestrogenic effects caused by ZEA, maintaining the body of gilt in a normal and healthy status. It is suggested that reproductive organs of gilts are seriously affected even if they are fed a low dose of ZEA in less time, and the addition of B. subtilis ANSB01G can effectively alleviate ZEA toxicosis in gilts.

Additional information

Funding

This study was supported by the Special Fund from National Natural Science Foundation of China [grant number 31301981], National Key Technology Research and Development Program of the Ministry of Science and Technology of China [grant numbers 2012BAD39B00 and 2013BAD10B02], and the Beijing Municipal Natural Science Foundation [grant number 6132021].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.