200
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Physiological behaviour of gliotoxigenic Aspergillus fumigatus sensu stricto isolated from maize silage under simulated environmental conditions

, , , , , , & show all
Pages 236-244 | Received 29 Aug 2014, Accepted 04 Dec 2014, Published online: 19 Jan 2015
 

Abstract

Environmental conditions play a key role in fungal development. During the silage production process, humidity, oxygen availability and pH vary among lactic-fermentation phases and among different silage sections. The aim of this work was to study the physiological behaviour of gliotoxicogenic Aspergillus fumigatus strains isolated from maize silage under simulated natural physicochemical conditions – different water activities (aW), temperatures (Tº), pH and oxygen pressure – on the growth parameters (growth rate and lag phase) and gliotoxin production. The silage was made with the harvested whole maize plant that was chopped and used for trench-type silo fabrication. Water activity and pH of the silage samples were determined. Total fungal counts were performed on Dichloran Rose Bengal Chloramphenicol agar and Dichloran 18% Glycerol agar. The morphological identification of A. fumigatus was performed with different culture media and at different growth temperature to observe microscopic and macroscopic characteristics. Gliotoxin production by A. fumigatus was determined by HPLC. All strains isolated were morphologically identified as A. fumigatus. Two A. fumigatus strains isolated from the silage samples were selected for the ecophysiological study (A. fumigatus sensu stricto RC031 and RC032). The results of this investigation showed that the fungus grows in the simulated natural physicochemical conditions of corn silage and produces gliotoxin. The study of the physiological behaviour of gliotoxigenic A. fumigatus under simulated environmental conditions allowed its behaviour to be predicted in silage and this will in future enable appropriate control strategies to be developed to prevent the spread of this fungus and toxin production that leads to impairment and reduced quality of silage.

Additional information

Funding

This study was supported by grants from CAPES/SPU 048/10, FONCyT-PICT 1606/12 and SECYT (UNRC).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.