876
Views
27
CrossRef citations to date
0
Altmetric
Articles

Linear and cyclic oligomers in polybutylene terephthalate for food contact materials

ORCID Icon, &
Pages 583-598 | Received 17 Jul 2017, Accepted 18 Nov 2017, Published online: 28 Dec 2017
 

ABSTRACT

Polybutylene terephthalate (PBT) is a polyester (PES) gaining more importance on the food contact material (FCM) market. However, little is known about the potential migration of PBT oligomers which are formed during polymer production. In this work, PBT pellets and a slotted spoon manufactured from this material by injection moulding were analysed on extractable oligomers and their migration potential into hydrophilic foods. Overall 27 oligomers (cycles and linears) could be identified in different extracts by HPLC-DAD/ESI-MS data, but without confirmation by reference substances. The oligomers were quantified by HPLC-DAD using bis(2-hydroxyethyl) terephthalate (BHET) as external standard and the total amount of oligomers isolated by reprecipitation from the pellets and the spoon were 0.69 and 0.71%, respectively. While cyclic oligomers made up for approximately 90% of the extractable oligomers, linear oligomers proved to be more relevant for migration into aqueous foodstuffs. Furthermore, it was shown that hydrolysis of oligomers can take place in water at elevated temperatures. Consequently, the qualitative and quantitative composition of PBT oligomers in aqueous foods from FCMs does not only depend on migration but also on hydrolysis. Migration testing of the PBT spoon under repeat use conditions with water at 100°C for 2 h resulted in 0.29 mg item−1 of linear oligomers and 0.05 mg item−1 of the cyclic PBT dimer in the third migrate.

Acknowledgments

The authors thank Prof. Dr. Speer and his working group for permission to use their HPLC-DAD/ESI-MS system to analyse PBT extracts as well as the professional support during that time by Nicole Beitlich.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.