221
Views
5
CrossRef citations to date
0
Altmetric
Articles

Probabilistic risk model to assess the potential for resistance selection following the use of anti-microbial medicated feed in pigs

, ORCID Icon, &
Pages 1266-1277 | Received 26 Jan 2018, Accepted 24 Mar 2018, Published online: 30 May 2018
 

ABSTRACT

The cross-contamination of non-medicated feed with residues of anti-microbials (AM) causes a public and animal health concern associated with the potential for selection and dissemination of resistance. To analyse the associated risks, a probabilistic model was built using @Risk® (Palisade Corporation®) to show the potential extent of the effect of cross-contaminated pig feed on resistance selection. The results of the model include estimations of the proportion of pigs per production stage with residues of doxycycline, chlortetracycline, sulfadiazine and trimethoprim in their intestinal contents, as a result of exposure to cross-contaminated feed with different carry-over levels, in Belgium. By using a semi-quantitative approach, these estimations were combined with experimental data on AM concentrations associated with potential for resistance-selection pressure. Based on this model, it is estimated that 7.76% (min = 1.67; max = 36.94) of sows, 4.23% (min = 1.01%; max = 18.78%) of piglets and 2.8% (min = 0.51%; max = 14.9%) of fatteners in Belgium have residues of doxycycline in their intestinal tract due to consumption of feed with at least 1% carry-over. These values were estimated to be almost triple for sulfadiazine, but substantially lower for chlortetracycline and trimethoprim. Doxycycline concentrations as low as 1 mg/L (corresponding to consumed feed with at least 1% carry-over) can select for resistant porcine commensal Escherichia coli in vitro and in vivo. Conclusions on this risk could not be drawn for other AM at this stage, due to the lack of data on concentrations associated with resistance development. However, since the possibility of resistance mechanisms (e.g. co-selection) occurring cannot be excluded, the results of this model highlight that the use of AM medicated feed should be minimised where possible. In case of medicated feed production, good practice should be followed thoroughly at all levels of production, distribution, storage and administration, with a special focus on the feed distributed to piglets and sows.

Acknowledgements

Prof. Dr. Dominiek Maes and Ioannis Arsenakis, DVM, MSc are greatly acknowledged for their input in the parametrisation of the model.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Federal Public Service Health, Food Chain Safety and Environment, Belgium [RT 12/03 CROSSCONTAM].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.