1,494
Views
66
CrossRef citations to date
0
Altmetric
Articles

Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1803-1818 | Received 16 Jan 2018, Accepted 01 Jul 2018, Published online: 06 Aug 2018
 

ABSTRACT

The control of fungal contamination is particularly important to avoid both spoilage of food and feed products and the occurrence of toxic compounds, known as mycotoxins. Some lactic acid bacteria (LAB) strains have shown the capacity to inhibit fungal growth and the production of mycotoxins. In this work, cell-free supernatants (CFS) of Lactobacillus plantarum UM55 and Lactobacillus buchneri UTAD104 were tested against Penicillium nordicum radial growth and OTA production. When CFS of these strains were used, the radial growth of the fungus was inhibited by less than 20%, but the production of OTA was reduced by approx. 60%. These antifungal effects resulted from organic acids produced by LAB. The CFS of L. plantarum UM55 contained lactic acid, phenyllactic acid (PLA), hydroxyphenyllactic acid (OH-PLA) and indole lactic acid (ILA), while L. buchneri UTAD104 CFS contained acetic acid, lactic acid and PLA. These organic acids were further tested individually for their inhibitory capacity. Calculation of the inhibitory concentrations (ICs) showed that acetic acid, ILA and PLA were the most effective in inhibiting P. nordicum growth and OTA production. When the inhibitory activity of LAB cells incorporated into the culture medium was tested, L. buchneri UTAD104 inhibited the production of OTA entirely in all conditions tested, but fungal growth was only inhibited completely by the highest concentrations of cells. Acetic acid production was primarily responsible for this effect. In conclusion, the ability of LAB to inhibit mycotoxigenic fungi depends on strain capability to produce specific organic acids, and those acids may differ from strain to strain. Also, the use of LAB cells, especially from L. buchneri, in food products prone to contamination with P. nordicum (e.g. dry-cured meats and cheeses) may be an alternative solution to control fungal growth and OTA production.

Acknowledgements

Ana Guimarães received support through grant SFRH/BD/103245/2014 from the Portuguese Foundation for Science and Technology (FCT). Luís Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 financed by FCT/MEC (OE). This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684); and of BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Ana Guimarães received support through grant SFRH/BD/103245/2014 from the Portuguese Foundation for Science and Technology (FCT). Luís Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 financed by FCT/MEC (OE). This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684); and of BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.