485
Views
12
CrossRef citations to date
0
Altmetric
Articles

An LC–ESI–MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: validation and surveillance

, , , , , & show all
Pages 1975-1989 | Received 24 May 2018, Accepted 25 Jul 2018, Published online: 24 Aug 2018
 

ABSTRACT

An increasing concern about food safety has been observed over the years. The presence of drugs residues in food is one of the major subjects of research in food safety. Feedingstuffs can be responsible for carryover into the food chain of residues of several drugs. This paper describes the development, validation and application of a fast and simple method for analysis of 24 antibiotic residues in feedingstuffs for cattle, pigs and poultry. Analytes include compounds from different antimicrobials classes, such as sulfonamides (sulfadiazine, sulfamethazine, sulfamethoxazole, sulfaquinoxaline, sulfachlorpyridazine, sulfadoxine, sulfadimethoxine, sulfizoxazole, sulfamerazine and sulfathiazole), fluoroquinolones (ciprofloxacin, enrofloxacin, norfloxacin, danofloxacin, difloxacin, sarafloxacin, flumequine, nalidixic acid and oxolinic acid), tetracyclines (tetracycline, doxycycline, oxytetracycline and chlortetracycline) and trimethoprim. Samples were extracted with methanol:water (70:30) 0.1% formic acid, followed by clean-up steps using centrifugation, low-temperature purification (LTP) and ultracentrifugation. Instrumental analysis was performed using liquid chromatography coupled to tandem mass spectrometry. Chromatographic separation was achieved using a C18 column and a mobile phase composed of acetonitrile and water, both with 0.1% formic acid. Validation parameters such as limit of detection (LOD), limit of quantification (LOQ), selectivity, linearity, accuracy, precision, decision limit (CCα) and detection capability (CCβ) were determined and meet the adopted criteria. LOD and LOQ were set to 30 and 75 µg kg−1, respectively. Inter-day precision were in the range from 4.0 to 11.1%, and linearity provides values of r2 above 0.95 for all analytes. The optimised method was applied to the analysis of more than 1500 real samples within the period 2012–2017. Non-compliant results were discussed and classified in terms of analytes, feed types and target species. Multivariate analysis of the data was performed using principal component analysis.

GRAPHICAL ABSTRACT

Acknowledgments

The authors thank the CAPES for the fellowship provided for Juliana Bazzan Arsand, and to National Council for Scientific and Technological Development (CNPq) for the fellowship provided to Magda Targa Martins.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.