367
Views
2
CrossRef citations to date
0
Altmetric
Articles

Contribution of packaging materials to MOSH and POSH contamination of milk powder products during storage

, , , , &
Pages 1034-1043 | Received 22 Nov 2020, Accepted 07 Feb 2021, Published online: 30 Mar 2021
 

ABSTRACT

Mineral oil hydrocarbons (MOH) in milk powders, particularly in infant formulas, have been and continue to be a major concern to the public worldwide. These contaminants are likely derived from environmental pollution, manufacturing process and packaging materials. In this study, 23 Chinese commercial milk powder products packaged in four types of materials, i.e. metal cans, paper containers, paperboard boxes with internal bags, and aluminium foil-plastic bags, were collected and stored for 1 year. The total and surface MOH in these samples were detected and compared before and after storage to understand the MOH migration during storage, despite no mineral oil saturated hydrocarbons (MOAH) were detected. The contents of mineral oil saturated hydrocarbons (MOSH) and polyolefin oligomeric saturated hydrocarbons (POSH) in metal cans were the least among the four packages and changed little during storage, which suggested that little MOH migration occurred in metal material. Despite all the food contact materials in the other three packagings were the aluminium foil-plastic composite, the similar low migration occurred in the aluminium foil-plastic bags and internally contained composite bag(s) in paperboard boxes. However, both total and surface MOSH and POSH easily migrated from the paper-plastic-aluminium composite of paper containers during storage. These findings are helpful for the selection of packaging materials in manufacturing milk powder products or other foods.

Graphical Abstract

Acknowledgments

This work was supported by the Beijing Natural Science Foundation (2182020), and Pre-research Project of Innovation Engineering of Beijing Academy of Science and Technology (PXM2020_178305_000007).

Disclosure statement

The authors declare no potential conflict of interest.

Additional information

Funding

This work was supported by the Natural Science Foundation of Beijing Municipality [2182020]; Pre-research Project of Innovation Engineering of Beijing Academy of Science and Technology [PXM2020_178305_000007].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.