273
Views
2
CrossRef citations to date
0
Altmetric
Articles

Phenolipids as new food additives: from synthesis to cell-based biological activities

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1365-1379 | Received 20 Mar 2022, Accepted 29 May 2022, Published online: 13 Jun 2022
 

Abstract

Increasing interest has been shown in phenolic compounds for enhancing food quality, but their hydrophilicity restricts application in lipophilic systems. Therefore, in this study, twelve hydroxycinnamates derivatives (alkyl and steryl esters of sinapic acid (SA), caffeic acid (CA), and ferulic acid [FA]) were synthesised and evaluated for antioxidant and cytotoxic characteristics. CA esters had the highest radical scavenging activity (RSA) analysed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Values of inhibitory concentration (IC50) of synthesised compounds were related to their structure and lipophilicity. The effect of these hydroxycinnamic acid esters on the antioxidant potential of real samples (rapeseed oil, margarine and mayonnaise) was estimated. None of the investigated derivatives significantly affected the viability of the model intestinal cells Caco2, while the octyl esters demonstrated a toxic effect at low concentrations. The synthesised esters exerted cytotoxic and anti-proliferative effects against transformed cell lines (HeLa and A549). Octyl esters were potent anticancer compounds on two human cancer cell lines. The synthesised phenolipids, as valuable and safe antioxidant additives, can find broader applications in the production of fat-based products to prevent oxidation processes, extend their shelf life and improve quality.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Acknowledgements

Dobrochna Rabiej-Kozioł wishes to thank Polish National Science Center for the financial support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Polish National Science Center [grant No. 2018/29/N/NZ9/02748].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.