116
Views
9
CrossRef citations to date
0
Altmetric
Articles

Influence of velocity gradient and rapid mixing time on flocs formed by polysilica iron (PSI) and polyaluminum chloride (PACl)

, , , &
Pages 4729-4735 | Received 28 Sep 2012, Accepted 15 Nov 2012, Published online: 11 Feb 2013
 

ABSTRACT

The aim of this investigation was to evaluate the effect of different velocity gradient and rapid mixing time on coagulation and floc properties, using polysilica iron (PSI) and polyaluminum chloride (PACl) with different rapid mixing speeds and times. The growth, breakage, and re-growth of flocs were monitored by a particle-size analyzer during the rapid mixing, in order to determine the underlying mechanisms. For PSI and PACl, three different zones were found to depending on the G value in the coagulation process. At low G values (G < 546 s−1 for PSI flocs and G < 390 s−1 for PACl flocs), the aggregation dominated over breakup. At mean G values (G = 546 s−1 for PSI flocs and G = 390 s−1 for PACl flocs), floc formation was maximized with the largest flocs produced at the lowest residual turbidity. For large G values (G > 546 s−1 for PSI flocs and G > 390 s−1 for PACl flocs), breakup dominated over floc formation. Broken flocs did not fully re-grow after breakage, probably as a result of a change in the floc surface properties arising from the rupture of bonds within the hydroxide precipitate. A rapid mixing time of 60 s led to maximum floc formation. In addition, PSI flocs were more durable to high than PACl.

Acknowledgments

This research was supported by the Ecological Engineering Laboratory. Thanks are extended to Dr. O. Nishimura for his editing of the text and to the reviewers for their suggestions on how to improve this paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.