169
Views
3
CrossRef citations to date
0
Altmetric
Articles

Role of a constructed wetland to humify effluent organic matter from a wastewater treatment plant

, , , , &
Pages 5840-5847 | Received 28 Feb 2013, Accepted 24 May 2013, Published online: 25 Jun 2013
 

Abstract

The degree of aromaticity or hydrophobicity in wastewater effluent organic matter (EfOM) increases during flow-through constructed wetlands connected directly to a wastewater treatment plant (WWTP), as identified using fractionation followed by analysis methods, with respect to major biopolymers (polysaccharides, amino sugars, protein, polyhydroxy aromatics, and lignins). In this study, WWTP effluent and wetland EfOM were fractionated using preparative high-performance liquid chromatography (prep-HPLC) with both UV and RI detectors, and then, their physical and chemical properties were characterized using UV/Vis, high-performance size exclusion chromatography (HPSEC), 3D fluorescence, and pyrolysis-GC/MS (Py-GC/MS). WWTP and wetland EfOM were separated into three fractions (peak #1–3), using prep-HPLC, through C-18 and size exclusion mechanisms. Results of specific UV absorbance (SUVA), 3D fluorescence, and Py-GC/MS analyses indicate that relative aromaticity/hydrophobicity of organic matter are in the order of peak #3 > peak #2 > peak #1, which also represents order of molecular weight (MW) (peak #1 > peak #2 > peak #3).

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012047029), and also by National Research Foundation of Korea Grant funded by the Korean Government Ministry of Education, Science and Technology (NRF-2011-355-D00030).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.