83
Views
4
CrossRef citations to date
0
Altmetric
Articles

Study on dissolved organic nitrogen (DON) removal by activated carbon adsorption

, , , , , & show all
Pages 4476-4484 | Received 14 Apr 2012, Accepted 30 Apr 2013, Published online: 17 Jul 2013
 

Abstract

Dissolved organic nitrogen (DON) is an important issue in drinking water field. This paper deals with DON removal by activated carbon (AC) in batch and fixed bed operation. Adsorption kinetics and equilibrium isotherms in batch operation are investigated while the breakthrough curves in fixed bed operation for DON adsorption at different conditions are obtained. The isotherm results show that the peach carbon is the most suitable type which shows higher adsorption capacity than other ACs. Kinetic data of adsorption are well fitted by the pseudo-second-order kinetic model, and the thermodynamic constants are also evaluated in the study. The results of the fixed bed operation show that, with the increase of the flow rate and the influent concentrations, the breakthrough curve becomes steeper while the break point time decrease. With the increase in the bed height, the breakthrough time increases. Adams-Bohart model is used to describe the initial region of breakthrough curve, while bed depth service time model is applied to predict the breakthrough time for new conditions. Both models give good agreement with experimental curves. This paper reveals the suitable ACs for DON removal and gives the basic data for DON removal in fix bed adsorption.

Acknowledgments

The authors would like to acknowledge financial support for this work provided by the NSFC (No. 51208531 and 2011J05144).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.