123
Views
15
CrossRef citations to date
0
Altmetric
Articles

Ru(III)-catalyzed permanganate oxidation of bisphenol A

&
Pages 4592-4601 | Received 01 Jul 2013, Accepted 21 Nov 2013, Published online: 09 Dec 2013
 

Abstract

This study employed Ru(III) as catalyst in permanganate oxidation of bisphenol A (BPA) for the first time. Ru(III) could significantly improve the reaction rate of BPA oxidation by 1.2–6.3 times with its concentration varying from 2.5 to 15 μM. The oxidation of BPA by Ru(III)-catalyzed permanganate followed pseudo-first order with respect to BPA or permanganate and second order with respect to Ru(III). BPA removal by Ru-catalyzed permanganate oxidation was heavily dependent on pH, which may be associated with the variation of permanganate oxidation potential with pH. The effect of temperature on BPA removal by Ru(III)-catalyzed permanganate was investigated, and the activation parameters were calculated. BPA removal in the catalytic oxidation was enhanced in the presence of 1–10 mg C L−1 humic acid. Although the catalytic ability of Ru(III) in tap water was inferior to that in DI water, the presence of 5 μM Ru(III) did increase the second-order rate constant of BPA oxidation from 36.7 to 40.8 M−1 s−1 in tap water. The degradation by-products of BPA in catalytic permanganate oxidation were identified. Finally, the catalytic mechanism was tentatively proposed.

Acknowledgements

This work was supported by the Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China (PCRRY11001), the National Natural Science Foundation of China (21077029), and Shanghai Youth Science and Technology Morning Star Plan (12QA1403500).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.