99
Views
13
CrossRef citations to date
0
Altmetric
Articles

Dominant factors controlling the efficiency of two-phase flow cleaning in spiral-wound membrane elements

, , , &
Pages 17625-17636 | Received 29 Jun 2015, Accepted 16 Aug 2015, Published online: 11 Sep 2015
 

Abstract

Two-phase flow cleaning has been successfully applied to control fouling in spiral wound membrane elements. This study focuses on its experimental optimization using a Taguchi Design of Experiment method (L-25 orthogonal arrays) to elucidate the influence of different factors and to reveal the important one(s) affecting the cleaning efficiency of two-phase flow cleaning. All possible combinations of the factors, i.e. feed type, spacer geometry, gas/liquid ratio, and liquid velocity, each at five levels were evaluated. The main effect of each factor on the efficiency of two-phase flow cleaning was measured by determining the performance response (mean of cleaning efficiency) and by calculating the mean signal-to-noise ratio. An analysis of variance was applied to calculate the relative contribution of each factor on the efficiency of two-phase flow cleaning. The results showed that the feed type is by far the most essential factor contributing to the cleaning efficiency. The spacer geometry is ranked second, followed by the gas/liquid ratio and the liquid velocity, which both have an only very minor effect on the cleaning performance. In terms of practical application, the operator should consider first the type of foulant prior to taking a decision on whether or not two-phase flow cleaning will be effective. Once the foulant type is defined, the use of the highest gas/liquid ratio, the highest liquid velocity, and the thickest feed spacer (diamond type) are recommended to achieve maximum two-phase flow cleaning efficiency.

Acknowledgments

This work was performed in the cooperation framework of Wetsus, centre of excellence for sustainable water technology (www.wetsus.nl). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and the Environment, the European Union Regional Development Fund, the Province of Fryslân, and the Northern Netherlands Provinces. The authors thank the participants of the research theme Advanced Clean Water Technology for fruitful discussions and their financial support. Delstar, Trisep, Toray, and Hydranautics are acknowledged for supplying the feed spacers and membranes.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.